
Problem set 8 key 
9.59.  Model: The box starts from rest. 
Visualize:  Use the work–kinetic energy theorem 
 

 
Solve:  First compute the total work done on the box during the launch. 

 

Now use the work–kinetic energy theorem. 

 

Assess:  The friction decreased the launch speed only a bit. 

9.64.  Model:  Use the model of static friction, kinematic equations, and the definition of power. 
Solve:  (a) The rated power of the Porsche is  and the gravitational force on the car is 

 The amount of that force on the drive wheels is  
Because the static friction of the tires on road pushes the car forward, 

 

(b) Only 70% of the power generated by the motor is applied at the wheels. 

 

(c) Using the kinematic equation,  with  and  we obtain 

 

Assess:  An acceleration time of 1.79 s for the Porsche to reach a speed of from rest is reasonable. 



10.24.  Model:  For an energy diagram, the sum of the kinetic and potential energy is a constant. 
Visualize: 
 
 

 
 
 

The particle is released from rest at  That is, at  Since the total energy is given by 
 we can draw a horizontal total energy (TE) line through the point of intersection of the potential 

energy curve (PE) and the  line. The distance from the PE curve to the TE line is the particle’s kinetic 
energy. These values are transformed as the position changes, causing the particle to speed up or slow down, but 
the sum  does not change. 
Solve:  (a)  We have  and this energy is a constant. For  and, therefore, K must be 
negative to keep E the same  Since negative kinetic energy is 
unphysical, the particle cannot move to the left. That is, the particle will move to the right of  
(b)  The expression for the kinetic energy is  This means the particle has maximum speed or maximum 
kinetic energy when U is minimum. This happens at  Thus, 

 

The particle possesses this speed at  
(c)  The total energy (TE) line intersects the potential energy (PE) curve at  and  These are 
the turning points of the motion. 

10.25.  Model:  For an energy diagram, the sum of the kinetic and potential energy is a constant. 
Visualize: 
 
 

 
 
The particle with a mass of 500 g is released from rest at A. That is,  at A. Since  we 
can draw a horizontal TE line through  The distance from the PE curve to the TE line is the particle’s 
kinetic energy. These values are transformed as the position changes, causing the particle to speed up or slow 
down, but the sum  does not change. 



Solve:  The kinetic energy is given by  so we have 

 

Using  we get 

 

10.32.  Model:  Use the negative derivative of the potential energy to determine the force acting on a particle. 
Solve:  The y-component of the force is  

 
At   at   and at  

10.40.  Visualize:  The tension of 20.0 N in the cable is an external force that does work on the block  
increasing the gravitational potential energy of the block. We placed the origin of 

our coordinate system on the initial resting position of the block, so we have  and  

 Also,  and  The energy bar chart shows the energy 
transfers and transformations.  
 

 
 

Solve:   The conservation of energy equation is 

 

10.44.  Model:  Since there is no friction, the sum of the kinetic and gravitational potential energy does not 
change. Model Julie as a particle. 



Visualize: 
 
 

 
 
 

We place the coordinate system at the bottom of the ramp directly below Julie’s starting position. From 
geometry, Julie launches off the end of the ramp at a 30º angle. 

Solve:  Energy conservation:  

Using  the above equation simplifies to 

 

We can now use kinematic equations to find the touchdown point from the base of the ramp. First we’ll consider 
the vertical motion: 

 

 

For the horizontal motion: 

 
 

Assess:  Note that we did not have to make use of the information about the circular arc at the bottom that carries 
Julie through a  turn. 

10.50.  Model:  Identify the truck and the loose gravel as the system. We need the gravel inside the system 
because friction increases the temperature of the truck and the gravel. We will also use the model of kinetic 
friction and the conservation of energy equation. 
Visualize: 
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Visualize: 
 
 

 
 
 

We place the coordinate system at the bottom of the ramp directly below Julie’s starting position. From geometry, 

Julie launches off the end of the ramp at a 30º angle. 

Solve:  Energy conservation: 1 g1 0 g0K U K U+ = + 2 2
1 1 0 0

1 1

2 2
mv mgy mv mgy⇒ + = +  

Using 0 0 10 m/s, 25 m, and 3 m,v y y= = =  the above equation simplifies to 

2 2
1 1 0 1 0 1

1
2 ( ) 2(9 8 m/s )(25 m 3 m) 20 77 m/s

2
mv mgy mgy v g y y+ = ⇒ = − = . − = .  

We can now use kinematic equations to find the touchdown point from the base of the ramp. First we’ll consider the 

vertical motion: 

2 2 2
2 1 1 2 1 2 1 1 2 1 2 1

2
2 1 2 12 2

1 1
( ) ( ) 0 m 3 m ( sin30°)( ) ( 9.8 m/s )( )

2 2

20.77 m/s sin30° (3 m)
( ) ( ) 0

(4.9 m/s ) (4.9 m/s )

y yy y v t t a t t v t t t t

t t t t

= + − + − = + − + − −

( )
⇒ − − − − =

 

2 2
2 1 2 1 2 1( ) (2.119 s)( ) (0.6122 s ) ( ) 2.377 st t t t t t− − − − = 0⇒ − =  

For the horizontal motion: 

2
2 1 1 2 1 2 1

1
( ) ( )

2
x xx x v t t a t t= + − + −  

2 1 1 2 1( cos30 )( ) 0 m (20 77 m/s)(cos30 )(2 377 s) 43 mx x v t t− = ° − + = . ° . =
 

Assess:  Note that we did not have to make use of the information about the circular arc at the bottom that carries 

Julie through a 90°  turn. 



 
 

We place the origin of our coordinate system at the base of the ramp in such a way that the x-axis is along the 
ramp and the y-axis is vertical so that we can calculate potential energy. The free-body diagram of forces on the 
truck is shown. 
Solve:  The conservation of energy equation is  In the present case, 

   The thermal energy created by friction is  

 
Thus, the energy conservation equation simplifies to 

 
Assess:  A length of 124 m at a slope of  seems reasonable. 

10.54.  Model:  Assume an ideal spring, so Hooke’s law is obeyed. Treat the physics student as a particle and 
apply the law of conservation of energy. Our system comprises the spring, the student, and the ground. We also 
use the model of kinetic friction. 
Visualize:   We place the origin of the coordinate system on the ground directly below the end of the compressed 
spring that is in contact with the student. 
 

 
 

Solve:  (a) The energy conservation equation gives  

 
Since      and  



 
(b) Friction creates thermal energy. Applying the conservation of energy equation once again: 

 
With  and  the above equation is simplified to 

 
From the free-body diagram for the physics student, we see that  Thus, the 
conservation of energy equation gives 

 
Using and  we get 

 
Assess:   which is greater than  The higher value is due to the 
transformation of the spring energy into gravitational potential energy. 
 
10.56.  Model:  Model the block as a particle. 
Visualize:  The system is the block. 
 

 
 

Solve:  A preliminary calculation: use Newton’s second law in the y direction to see that so  
Now find the work done on the block by the forces on it. 

 

Use the work–kinetic energy theorem: remembering that  

 

Assess:  This seems like a reasonable speed for a 2.6 kg block after pulling it 4.0 m. 

10.57.  Solve:  (a)  The equilibrium positions are located at points where  

 



Note that  is in radians and x is in meters. The function  may have values  and  Thus 

there are two values of x,  

 

within the interval  
(b)  A point of stable equilibrium corresponds to a local minimum, while a point of unstable equilibrium 
corresponds to a local maximum. Compute the concavity of U(x) at the equilibrium positions to determine their 
stability. 

 

At   Since  is a local maximum, so  is a point 

of unstable equilibrium. 

At  Since  is a local minimum, so  is a 

point of stable equilibrium. 
 
 
 
 
 

 

 

 

6.43.  Visualize:  We’ll use  to find the acceleration of the balls, which will be inversely 
proportional to the mass of the balls.  and  in each case. 

Solve:  Newton’s second law relates mass, acceleration, and net force:  If we graph  vs.  then the 

slope of the straight line should be the size of the piston’s force. 
 

 
 

We see that the linear fit is very good. The slope is  this is the size of the piston’s force. 
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(b) Mechanical energy is E K U= + .  From the graph, 20 JU =  at 1 0 mx = . .   
The kinetic energy is 2 21 1

2 2 (0 100 kg)(25 m/s) 31 25 JK mv= = . = . .  Thus 51.25 J.TE =  The turning point 

occurs where the total energy line crosses the potential energy curve. We can see from the graph that this is at 
approximately 2.5 m. For a more accurate value, the potential energy function is U = 20x J. The TE line crosses at 
the point where 20 51 25,x = .  which is 2 6 mx = . .  

10.60.  Model:  A “sprong” obeys the force law 3
e( ) ,xF q x x= − −  where q is the sprong constant and ex  is the 

equilibrium position. 
Visualize:  We place the origin of the coordinate system on the free end of the sprong, that is, e f 0 mx x= = .  
 

 
 

Solve:  (a) The units of q are 3N/m .  

(b) 3 4

0

Since / ,  we have ( ) ( ) /4
x

x xF dU dx U x F dx qx dx qx= − = − = − − = .∫ ∫  

(c) Applying the energy conservation equation to the ball and sprong system gives 

f f i i
2 41 1
f i2 4

4 3 4

f

0 J 0 J

(40,000 N/m )( 0 10 m) 10 m/s
2 2(0 020 kg)

K U K U

mv qx

qxv
m

+ = +

+ = +

− .= = =
.

 

10.61.  Model:  Since there is a potential energy then the force is conservative. 
Visualize:  The force is the negative derivative of the potential energy. 
Solve:  

( )( ) ( ) ( )
2 sin

2 cosLx
x L L

d Ax B xdUF Ax B x
dx dx

π
π π

+
= − = − = − −

 
(a) Evaluate this expression at x = 0: (0) / .xF B Lπ= −  
(b) Evaluate the expression at x = L/2: ( /2) .xF L AL= −  
(c) Evaluate the expression at x = L: ( ) 2 / .xF L AL B Lπ= − +  

10.62.  Visualize:  The potential energy is the negative integral of the conservative force. Use SI units. 
Solve:  

( )2 3 25
2(3 5 )  Jx xU F dx x x dx x x C= − = − − = − + +∫ ∫  

where C is the constant of integration and comes in joules, just as the other terms do. 



Assess:  We are glad to see that the intercept of our line looks very small, even though we don’t have a ball the 
inverse of whose mass is zero. 

7.41.  Model:  Use the particle model for the book (B) and the coffee cup (C), the models of kinetic and static 
friction, and the constant-acceleration kinematic equations. 
Visualize: 
 

 

Solve:  (a) Using  we find 

 

To find we must first find a. Newton’s second law applied to the book and the coffee cup gives 

 

 

The last two equations can be rewritten, using  as 

 

Adding the two equations gives 
 

 

Using this value for a, we can now find  as follows: 

 

(b) The maximum static friction force is  We’ll see if the force  
needed to keep the book in place is larger or smaller than  When the cup is at rest, the string tension is 

 Newton’s first law for the book is  



 

Because  the book slides back down. 

8.41.  Model:  Use the particle model for the rock, which is undergoing uniform circular motion. 
Visualize:  L is the hypotenuse of the right triangle. The radius of the circular motion is  
 

 

Solve:    
(a) Apply Newton’s second law in the and  

 

 

Set the two expressions for T equal to each other and solve for   

 

(b) Insert   and   

 

Assess:  Notice that the mass canceled out of the equation so the 500 g was unnecessary information. In other 
words, the answer, 72 rpm, would be the same regardless of the mass. 
The dependencies of  on g, L, and  seem to be in the right directions. 
 


