Textbooks* usually employ the conservation of angular
momentum to establish that the orbit stays in a plane (per-
pendicular to r X p, where r and p are not collinear). The
present treatment is strictly two-dimensional and does not
address the direction of angular momentum. However, the
persistence of an orbital plane can be seen by noting that no
component of a central force exists perpendicular to the
plane.

V.INVERSE-SQUARE FORCE ’
Motion under an inverse-square force law,
= —k/7, | (22)

conserves a third quantity, a complex number A4, defined in
the orbital plane,

A= — (iaP+R,), (23)
where
a=1/km. (24)

It is demonstrated below that 4 is constant.
The vector equivalent of 4 is the well-known Lenz™> vec-
tor A,

A= (1/mk)pXL —t, (25)

where L is the angular momentum vector and f is a unit
vector in the radial direction. The equivalence follows by
first noting that p X L is the vector /p rotated by 90° in the
— L direction. Converting to complex number notation,
this is P multiplied by (rotated by) exp ( — im/2) or — .
Replacing pXL in Eq. (25) by — ilP and writing r as its
complex counterpart R, establishes the equivalence with 4.
Of course, the aforementioned attributes of 4 were first
realized for the Lenz vector, but the treatment requires
handling the cross product and triple product.’

Differentiating Eq. (23) with respect to time and substi-
tuting from Newton’s second law and conservation of an-
gular momentum gives

_ 94 _ bt iR,6
at
— _iaRk /P + IRy (mP) =0.

This establishes that A4 is a constant of the motion.

The polar equation of the orbit is found by taking the dot
product of R with Eq. (23),

Re(R*4) = — a Re(iR*P) — Re(R *R,). (27)
Choosing the orientation® of 4 to be along 6 = 0, the left-
hand side can be written as 7 @ cos 8, where a is the magni-
tude of 4. The equation for a conic section follows,

al/r=1+acos 6,

and a is identified as the eccentricity.

(26)

(28)

'"P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill, New York, 1953), pp. 349-351.

2See, for example, Morse and Feshbach, pp. 73-76. A mathematician’s
viewpoint is expressed in S. MacLane and G. Birkhoff, Algebra (Mac-
millan, New York, 1968), pp. 253-255. :

* Magnitudes are denoted by the corresponding lowercase letters, f= |F|.
These conventions are convenient but not essential.

4See, for example, G. R. Fowles, Analytical Mechanics (Saunders, New
York, 1986), 4th ed., pp. 141-142.

*W. Lenz “The evolution of the motions and quantum condition of dis-
turbed Keplerian motion,” Z. Phys. 24, 197-207 (1924).

®The A vector appears to have been introduced first by Laplace. See H.
Goldstein, Classical Mechanics ( Addison-Wesley, Reading, MA, 1980),
2nd ed., p. 153.

’S. Borowitz, Fundamentals of Quantum Mechanics (Benjamin, New
York, 1967), pp. 305-306.

® The overall negative sign in Eq. (23) orients the 4 vector from the coor-
dinate origin to the pericenter of the orbit. This orientation corresponds
to the convention for 8 = 0 used in astronomy.
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This article is a “sampler,” which shows how quantum mechanics may be presented to students in
a way that makes apparent how natural quantum mechanics is as a description of the world. The
mathematical machinery of Hilbert space, the idea of representing observables by operators, the
Schrodinger equation, and the position-momentum uncertainty relation all follow from natural
assumptions that students can readily accept. The basic ideas of quantum mechanics are
developed from intuitive first principles to the point where one can connect with more traditional

treatments of quantum mechanics.

SIMPLICIO: Salviati, why is our world quantum mechani-
cal, instead of being classical? Quantum mechanics seems
unduly complicated!

SALVIATI: Does that question worry you too, Sagredo?
SAGREDO: 1t does, and I also worry about the abstract
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and apparently arbitrary nature of the postulates from
which quantum mechanics is developed. In Dicke and
Wittke’s' famous book on quantum mechanics, there are
seven postulates, including one that has a footnote that
contains a reference to a book in German. And, in Shan-
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kar? (which is one of the best books for learning quantum
mechanics), there are four postulates, but two of these con-
tain two parts each, so really six postulates are involved. It
seems a lot of postulates!

SIMP: Furthermore, all those postulates are utterly incom-
prehensible to the beginning student, and never seem in the
least degree natural.

SALYV: Gentlemen! I can obtain quantum mechanics so
naturally it will seem inevitable.

SAGR: What!

SIMP: Do it. .
SALV: I'll just sketch it, as it is perfectly ordinary quantum
mechanics, just seen from a slightly, but crucially, different
perspective. You’ll follow it easily, since you have a good
knowledge of Dirac Hilbert-space quantum mechanics.
SAGR: (Gulp!) Of course.

SIMP: Hold it, Salviati.  know that Ax Ap>#/2, which got
me through my Ph.D. comprehensive, but I'll confess I
don’t know much more. If you want me to understand,
you’ll have to fill in the details.

SALYV: Fine; the only price we pay for that is length. I will
have to cut off at some point, however, let’s say at where we
easily connect with various points in Shankar’s book.
SIMP: Good; proceed.

SALV: Let’s stick to one dimension, for simplicity. A typi-
cal problem in classical mechanics is “given the position of
a particle, and given the velocity of the particle, and given
that F = ma, and given the force F, predict what the posi-
tion of the particle will be in so many seconds.” That’s a lot
of “givens!” Let’s, instead, tackle this more basic problem:
“given nothing, predict the result of our impending posi-
tion measurement.” Sagredo?

SAGR: Given nothing? 1 can make no prediction.
SALV:1am not asking for a perfect result, just do the best
you can.

SAGR: Given no information, I cannot make any predic-
tion at all.

SALV: Not so, Sagredo. Here is our labeled x axis. Look at
it, and tell me one possible result of the measurement that
you are about to make.

SAGR: Well, 2.5 is a possible result.

SALV: Excellent. Now, tell me, what is the probability that
you will obtain that result, when you make your measure-
ment?

SAGR: Given no more information?

SALV: Yes.

SAGR: I cannot estimate the probability at all.

SALV: Well, can the probability be 1.7? Can it be — 0.2?
SAGR: No; the probability must lie somewhere between 0
and 1.

SALV: And the same is true for every one of the possible
values, which of course are the real numbers — « t0 + 0.
Let me sketch the probability curve, using a dashed line,
since we know nothing of its shape (Fig. 1).

SIMP: You have sketched it incorrectly, Salviati—you
don’t have it decreasing toward plus and minus infinity,
whereas we know that it must decrease to zero, so that the
integral under it is unity.

SALV: Excellent, Simplicio! I will redraw it (Fig. 2). So,
Sagredo, you were wrong; you were able to make a predic-
tion after all!

SAGR: It’s not much of a prediction, Salviati! It seems to
me to be nothing more than a concise summary of our igno-
rance.
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Fig. 1. Simplicio points out the defect in this probability curve, that the
area under the dashed (that is, unknown ) curve is not unity, or even finite.
The corrected version appears in Fig. 2.

SALV: Yes, but it has three great virtues: (1) Poor as it
may be, it is a prediction of the result of our impending
position measurement; (2) it is true; (3) it is based on
nothing—no “laws of physics,” or results of previous mea-
surements of anything, or anything.

SIMP: But Salviati, what if this whole approach is wrong,
and there do exist laws, and a better prediction than Fig. 2
is possible?

SALV: Any “better” theory can only produce a more con-
strained curve in Fig. 2. Everything we develop in the dis-
cussion that follows must be true, regardless of what else
may be true as well.

So let me continue. The curve in Fig. 2, I shall now show,
still does not contain, in itself, all of the information that we
in fact possess. For suppose I were to push part of the curve
down (reduce the probabilities, for a certain range of possi-
ble results). What would happen?

SIMP: Some other part of the curve must come up!

SALV: Thatis what should happen, but it does nor happen
automatically. It is for that reason that we now need to
develop rather elaborate machinery for discussing curves
of the type shown in Fig. 2. To do so, let’s start with a

) P{x)
/ NN
——~ S~ N\,
/ ~ / N
e S~/ el
7 =
—
0 | | 1 1 X
-1 -0.5 0 0.5 |

Fig. 2. The possible values for a position measurement are any one of the
real numbers, which stretch from — o to + . The probability of any
particular result is some unknown number having a value lying between 0
and 1. Some result for the position measurement will be obtained, upon
measurement, so the area under the curve is unity.
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Fig. 3. Our first Hilbert space, that for a tossed coin. The two perpendicu-
lar lines are not coordinate axes, they are the two orthogonal eigenvectors
of the ““coin toss” operator. There are two eigenvectors because there are
two possible results for the “measurement,” heads and tails. The solid
arrow is the state vector for an honest coin (that is, one having probability
0.5 landing “heads,” and 0.5 of landing “tails™). The dashed arrow is the
state vector for a biased coin. The probability of heads for the biased coin
is x; of tails y. Of course, x + y= 1.

situation that is much simpler than that shown in Fig. 2
(where there is an infinite number of possible outcomes).
Let’s, instead, start with a situation where there are only
two possible outcomes, a tossed coin.

Our machinery, called Hilbert space, is shown in Fig. 3.
It consists of two lines at right angles to each other; we
associate an outward direction with these lines, and call
them “eigenvectors of the coin-toss operator.” (Don’t try
to remember what the terminology means from previous

TAILS

HEADS

Fig. 4. The coin of Fig. 3 has landed, and landed heads. Note the new
position of the state vector.
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exposure to quantum mechanics; we are defining these
terms here.) The spinning coin is represented by the solid
arrow, called the “state vector.” The probability of the two
possible results of the ‘“measurement”—"heads” or
“tails”—is given by the coordinates of the tip of the arrow,
that is, by the projection of the state vector on the x and y
axes, respectively. You will see that we are dealing with an
honest coin—the probability of heads is 0.5, and the proba-
bility of tails is also 0.5. The state vector for a coin that is
biased in favor of heads is shown by a dashed arrow. For
that coin, the probability of heads is x, and the probability
of tails is y. Of course, x + y = 1, since you must get a
result, and you will inevitably get either heads or tails (our
coin is assumed not to land on edge!). So we draw into Fig.
2 the line that is defined by the equation x + y = 1; it slopes
up to the left.

Figure 4 shows Hilbert space after I have made my mea-
surement. It just so happens that the result was heads. The
new position of the state vector is that it lies on the x axis.
This means, of course, that the probability of heads is now
1, and the probability of tails is now zero, which is clearly
$0.

A most important point, now! Suppose that our two ei-
genvectors had not been orthogonal (i.e., at right angles to
each other), but instead had been at, say, 45°. Our present
situation would be that shown in Fig. 5, namely, that the
probability of heads is 1, and the probability of tails #0,
since the state vector has a nonzero projection onto the y
axis, despite lying on the x axis. Well, this is just not so—
the coin is sitting there, heads upward, and there is no prob-
ability that it is tails upward. So we conclude that theeigen-
vectors of our operator must be orthogonal, for our machin-
ery (Hilbert space) to work properly.

Now suppose that I have a three-sided die, so that there
are three possible outcomes. This Hilbert space is shown in
Fig. 6, with the state vector for an honest (and still-spin-

HEADS

Fig. 5. Our second Hilbert space, a defective one for a tossed coin. Even
though the coin has landed heads, this Hilbert space implies, incorrectly,
that there is still some probability that the coin is in fact tails! The defect,
of course, is that the two eigenvectors are not orthogonal. We learn that all
operators, where a definite result is obtained in a measurement, must have
mutually orthogonal eigenvectors.
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Fig. 6. Hilbert space is **3-D” for a three-sided die. The state vector for an
honest die is shown as a dashed arrow. This operator has three eigenvec-
tors, mutually perpendicular of course.

ning) die included in the diagram. Also shown is the plane
x + y +z= 1. With this figure, you can see why we are
developing our present machinery: If I were to move the
state vector in Fig. 6 so that the probability of one particu-
lar outcome is, say reduced (that is, so that the state vector
has a smaller projection on one particular axis), the proba-
bilities of the other possible outcomes will be, on average,
increased, and this happens automatically.

Actually, I don’t know how to construct a three-sided
die!

You can almost imagine the Hilbert space for an ordi-
nary six-sided die (even though I can’t draw the space, of
course): the space is six-dimensional, with six mutually
orthogonal axes and contains a “‘six-plane” having equa-
tion a+b+c+d+e+f=1, corresponding to the
equation x 4 y = 1 for our coin. You can even almost visu-
alize the state vector for an honest die! The possible results
of your measurements are, of course, 1, and 2, and 3, and 4,
and 5, and 6; these are called the eigenvalues of the die-toss
operator. (The eigenvalues of the coin-toss operator were
“heads” and “‘tails,” or if you wish, you can put a numeri-
cal label on each side of the coin. A physicist would likely
choose labels 4 }and —1.)

The probability curve for an ordinary (honest) die is
given in Fig. 7.

P(x)

1 1 1
3

4
0] | 2

Fig. 7. Here is the probability curve (like that of Fig. 2) for a normal six-
sided die. We cannot draw the corresponding Hilbert space, because it is
six-dimensional.
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Fig. 8. Here is the probability curve for a pair of dice thrown together.
This probability curve looks a bit more like that in Fig. 2.The numbers on
the x axis are the eigenvalues.

Suppose you were to throw a pair of identical dice. The
Hilbert space is eleven-dimensional, and the probability
curve for honest dice is given in Fig. 8.

Comparing Fig. 8 with Fig. 2 makes clear the relation-
ship between this work that we have been doing on dice-
/coins, and our original problem. Clearly, for our original
problem, Hilbert space is infinite-dimensional. There are
infinitely many mutually orthogonal eigenvectors of the
““position” operator, and the eigenvalues of the position
operator are all the real numbers between — oo and + oc.
While I cannot draw an infinite-dimensional Hilbert space,
I can extract a chunk of it for examination, and I have done
so in Fig. 9. Three typical eigenvalues (possible results of
our impending position measurement) are 2.5, 4.7, and
— 12.8; these numbers are used to label their eigenvectors.

1-12.8>

F 4
/

e
/>
Y.

) _
R
|4.7>

|2.5>

Fig. 9. Previous Hilbert spaces were fakes, for learning purposes. Hereisa
genuine Hilbert space, or rather, part of one, because this space, the *'posi-
tion” Hilbert space, is infinite-dimensional. I have extracted a small piece
of it for display. The dashed arrow is the state vector (its direction is
unknown). Three eigenvectors, labeled with their corresponding eigen-
values, are shown.

Richard C. Henry 1090



The state vector is shown dashed, since we have no idea
(see Fig. 2) where it is located, that is, what the relative

probabilities are of the various outcomes (such as 4.7).

Notice also that in Fig. 9 I have used Professor Dirac’s
symbols for designating vectors in Hilbert space: [4.7)
means “‘the eigenvector of the position operator that has
eigenvalue 4.7”; |¢) is the state vector.

Suppose now that I make my position measurement, and
that the result happens to be 4.7. Then the Hilbert space
looks as in Fig. 10. The state vector is no longer dashed, as
we now know precisely where it is—the probability of the
position being anything other than 4.7 (the value that has
just been actually measured!) is clearly zero, so the state
vector has no projection on any other of the infinite number
of position eigenvectors and has length unity along |4.7).
SAGR: Suppose we now repeat our position measurement.
Will we get the same result, from a second position mea-
surement?

SALYV: Our machinery as constructed says we will, and ex-
periment (always the ultimate arbiter) agrees.

I told you that our machinery was rather elaborate! But
now we have it fairly well defined. Let’s use it to obtain an
important insight!

We’ve been talking about a position measurement. Now
let’s talk about a measurement of any other quantity (e.g.,
humidity, momentum, spin of an electron, ...). Always a
definite result is obtained, so the Hilbert space for, say, the
humidity operator, or the operator corresponding to any
other physical quantity, must be made up of orthogonal
eigenvectors. And, let’s insist on having an infinite number
of dimensions, so that identical machinery will accommo-
date all possible physical quantities. (For example, you
know that in the case of the spin of the electron there are
observed to be only two possibilities, spin + 1 and spin

— 1, but if we label half of our infinite number of eigenvec-
tors |1/2), and half of them | — 1/2), then we successfully
accommodate the observed values of spin in our general
purpose machinery). One of our great aims, of course, is to
discover exactly what the eigenvalues are for various oper-
ators (that is, physical quantities ). At the present point, we
only know the eigenvalues for position, and we only know
those because Pythagoras taught us that space is real
numbers.®

|-12.8>

*‘\|4.7>

12.5>

Fig. 10. Following Fig. 9, a position measurement has now been actually
made, and the result is x = 4.7. The new position of the state vector is no
longer dashed, because we know where it is now.
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Finally, we will insist that eigenvalues turn out to be real
numbers, because every measured quantity is a real num-
ber.

SIMP: How can I be sure a/l measurable quantities are real
numbers?

SALV: Consider humidity; voltage; air pressure; and doz-
ens of others. You make your measurement, in the end, by
reading the position of a pointer in a scale that is laid out
along one dimension of space: Pythogoras tells us that our
reading is a real number!

SIMP: Yes! And for electron spin, I hold a ruler at the
output of the Stern—-Gerlach experiment, and I get a real
number as well—but not just any real numbers; just two
values, the two possible values of electron spin.

SIMP: So we have our Hilbert spaces for each and every
quantity. Now let’s discuss the relationship between the
Hilbert space corresponding to the position of a particle
and that corresponding to its momentum. In each case, the
Hilbert space is infinite-dimensional, the eigenvectors are
mutually orthogonal, and a state vector (one in each
space) represents the physical situation whatever it may
be.

First, actually make a position measurement: The posi-
tion state vector of course snaps to being some position
eigenvector.

Now place the origins of the two Hilbert spaces on top of
each other, and rotate the two Hilbert spaces so that the
two state vectors coincide. This is obviously always possi-
ble, and clearly simplifies matters. This does not yet com-
pletely determine the relative orientations of the position
and momentum Hilbert spaces, however; any rotation of
the Hilbert spaces around the common state vector is possi-
ble. Let us rotate these two Hilbert spaces around the com-
mon state vector until as many eigenvectors as possible
coincide.*

(Carry out the same procedure for the operators corre-
sponding to every physical variable, while you are at it.
Now all the state vectors coincide.)

What is the result? We don’t know, because at this point
we know nothing at all about the momentum operator.
What we can do, however, is describe the possible results,
and discuss what they would mean.

(1) One possibility is that a/l the momentum eigenvec-
tors lie exactly along position eigenvectors. In particular,
this would mean that a momentum eigenvector would lie
along the state vector; that is, the particle is in a momentum
eigenstate (as well as being in a position eigenstate). This,
in turn, would mean that if you were now to make a mo-
mentum measurement, you could be certain that your mea-
sured value would be the eigenvalue (whatever it is) of the
momentum eigenvector that is coincident with the position
eigenvector that is the state vector.

That’s one possibility.

(2) A second possibility is that some of the momentum
eigenvectors lie along position eigenvectors, but not all.

(3) The final possibility is that the particle is not in a
momentum eigenstate and that no amount of rotation
about the common state vector (which is a_position eigen-
vector) brings even a single momentum eigenvector into
coincidence with a single position eigenvector. What this
possibility would mean is that when the state vector is a
position eigenstate “the coin is still spinning” as far as mo-
mentum is concerned; that is, the probability of obtaining
any specific value of the momentum is less than unity.
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These are the only possibilities. Now, you know perfectly
well, from previous knowledge of quantum mechanics,
that we are going to find, eventually, that we are driven to
“possibility 3” in the case of momentum. The main thing to
realize at this point is that if indeed we find a logical reason
why possibility 3 must represent the situation (in the case
of momentum), then there is no mystery as to why the
uncertainty principle holds or why uncertainty is funda-
mentally involved in measurements: It simply must be,
logically.

SIMP: So how do we get driven to possibility 3?

SALYV: Patience, Simplicio, we have a long way to go yet.
But the great importance of the results fully justifies the
investment of your time.

Let’s now go back to Fig. 3, where we first developed the
machinery of Hilbert space and ask whether our design is
unique. Are there other (perhaps better) ways to build Hil-
bert space?

Yes, an esthetically perhaps more satisfying version of
Hilbert space is shown in Fig. 11. In place of the line
x + y = 1 we have the circle x* + y* = 1. The probabilities
are no longer x and y, of course; they are x” and y?, the
quantities having sum unity. The quantities x and y them-
selves we will give a name; we will call them the probability
amplitudes.

Our new version of Hilbert space has only one (minor)
advantage over the old, and that is, that the state vector is
of constant length.

Figure 11 does not exhaust the possibilities. Try plotting
up x* + y* = 1. This example loses the advantage of con-
stant length in the state vector, but otherwise there is noth-
ing wrong with it. In this case, we would again refer to x
and y as the probability amplitudes, and x* and y* would be
the two probabilities, the sum of which must of course be
unity.

So we see that, in general, the two probabilities can be
any (I suppose I should say, any “within reason”) func-
tions of x and y, and also the two functions need not be the
same function.

0.707 | -vvmmrmeeeeee >

TAILS

HEADS

Fig. 11. A “new improved” version of Hilbert space, for a tossed coin. The
probabilities are now x* -+ ? instead of x and y; the latter are renamed the
‘*probability amplitudes.” The sum of the probabilities is, of course, unity,
so x° + y° = 1 (this curve, a circle, is illustrated). Now the state vector is
of constant length!
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Fig. 12. Since, with our new version of Hilbert space, the probability curve
is the square of the probability amplitude, our probability curve of Fig. 2 is
now joined by a corresponding curve, shown here, giving the probability
amplitudes. This curve is called ¥(x), the wave function.

So what have we learned? That we have some freedom
left in our construction of Hilbert space!. We will need that
freedom before too long. For the time being, let us adopt
the x* + y* = 1 version as our Hilbert space, because of its
nice feature that the state vector is of constant length.

This choice means that each plot of the kind shown in
Fig. 2 is now joined by an associated plot (Fig. 12) of the
probability amplitudes, #(x). This curve, 1(x), is called
“the wave function.” In the x* 4+ y* = 1 case that we have
chosen, one simply squares the wave function to obtain the
probability curve (Fig. 2).

Now I want you to recall some elementary mathematics.
Forget what we are doing and turn your attention to Carte-
sian coordinate systems in “plane ordinary” two-dimen-
sional space (Fig. 13). I have no doubt that you remember

Fig. 13. First we consider this as two sets of ordinary coordinate axes in
the two-dimensional plane, and we review the mathematical connection
between the coordinates (x,y) and (x’,y") of the point P, referred to the
two coordinate systems. Second, however, we consider this as a 2-D
chunk of Hilbert space, and consider the lines x,y and x',y’ (which former-
ly were axes) to be eigenvectors of two operators, which for convenience
we designate the xy operator and the x'y’ operator.
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the formulas connecting the coordinates (x,y) of point P in
one coordinate system with the values of the coordinates
(x',y") of the same point in the other coordinate system; the
equations are

x'=xcos @+ ysin 6,
y' =ypcos & — xsin 6,

where 0 is the angle of rotation between the two coordinate
systems. No doubt you also recall that this pair of equations
is isomorphic to the following matrix equation:

(x’) _ ( cos 8 sin 6) (x)
¥/ \—sinf cos6/\y/’
For every value of 6, there is a unique matrix

( cos 6 sin B)
—sin@ cosB/’

Now let’s return to Hilbert space! Imagine Fig. 13, now,
as a chunk of Hilbert space. The lines labeled x and y, being
orthogonal, and having an outward direction associated
with them, represent eigenvectors of some operator. Mere-
ly because these two lines happen to be horizontal and ver-
tical, we will call this particular operator (whichever one it
is) our “basis operator.”

Similarly, the lines labeled x’ and y’, being orthogonal,
represent eigenvectors of some other operator. (Notice
that these two operators stand in a “possibility 3 relation-
ship to each other. For suppose the state vector lies on the
line labeled x. Then, certainly, no rotation of the two opera-
tors, or either of them, around the line labeled x, will cause
any two lines to coincide. The same is true for each eigen-
vector of each of the two operators.)

But now to the point. In the x, y basis, we have discov-
ered that there is a unique 2 X 2 matrix that specifies the
orientation of the set of eigenvectors of any operator with
respect to our reference set of eigenvectors. This means that
the operator is, in some sense, “represented” by such a
matrix.

This result generalizes easily to any number of dimen-
sions, although it requires more and more independent pa-
rameters (one less than the number of dimensions) to spec-
ify the matrix.

Notice that the values of the matrix elements depend on
the basis chosen: If the basis were different in Fig. 13 (say,
tipped slightly) the values of 8 would be different, and the
matrix elements would be different.

So, from now on, when we have chosen a specific basis to
work in, and we are thinking of an operator corresponding
to some physical variable, we are also thinking of a certain
specific matrix.

The reason for making this switch, away from geometry,
and instead to (completely equivalent) matrices, is that
matrices can be manipulated easily, using algebraic meth-
ods.

In the case of the operator having eigenvectors x, y in
Fig. 13, what is its matrix in its own basis? Clearly it is the
general matrix, but with @ set equal to zero (so that x’ = x

and y' =y), or
( cos 0 sin 9)_( cos 0 sinO)_(l 0)
—sin@ cosd/ \—sin0 cos0/ \0 1

So we see that an operator is represented, in it own basis
(which is called its “eigenbasis”), by the unit matrix. (The
unit matrix is also called the identity operator; we will use it
frequently.)
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Now the column matrix () corresponds to any vector,
that is, any point P. Consider a point on the x axis, that is,
consider the vector (). This vector represents the x axis
itself, which is one of the eigenvectors of the basis operator.
Normalize it to unit length [the length of the vector () is
of course yx? + 7 |, and the eigenvector is represented by
(3 ). Similarly, the other eigenvector of this operator is rep-
resented by (9), in the eigenbasis.

So, returning to our planned measurement of position in
one dimension, where we have an infinite-dimensional Hil-
bert space, we know that in the position basis, the position
operator can be represented by an infinite unit matrix, and
a typical eigenvector is

/ﬁ

S - O O

i

But now let’s be clever and elegant! We know that with
each position eigenvector is associated an eigenvalue, and
furthermore, thanks to Pythagoras, we know what these
(position) eigenvalues are: They are the real numbers.
Let’s invert a method of tacking the eigenvalue onto the
eigenvector, without doing any damage! We can do this by
representing our operator, not by the unit matrix, but by a
diagonal matrix having the eigenvalues as its diagonal ele-
ments (all other elements remain zero). Thus the particu-
lar tiny chunk of the infinite Hilbert space consisting of the
eigenvectors |5.0) and |5.1) would have its position opera-
tor represented, in the position basis, like this:

(5.0 0 )
0 s51/°
Now let’s decide to multiply the eigenvector |5.0) by the

matrix representing the position operator, just to see what
happens:

(5.0 0 ) (1) _ (5.0) _50 (1.0)
0 51/\0 0 0

We have discovered that when we choose to ““let the posi-
tion operator act on” a given position eigenvector, the re-
sult is a vector that, clearly, lies in the same direction as the
eigenvector in question, but that is stretched, so that its
length...is the eigenvalue! { Try it now for the other eigen-
vector, (7). ]

So we have changed our operator into a “‘stapling ma-
chine” that staples the eigenvalues onto the eigenvectors.
The order of the eigenvalues down the diagonal doesn’t
matter, because the eigenvectors are “all the same”—each
perpendicular to all the others. For convenience, one natu-
rally tends to have the labels increase prettily down the
diagonal.

Suppose we act on an arbitrary vector, with our position
operator:

(o s)C)=Ga):
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The result is a vector that clearly lies in a different direc-
tion than the original vector. It is obvious that we will ob-
tain, as our result, a vector that lies in the same direction as
the original vector, if and only if the original vector is an
eigenvector of the position operator; that is,

X |x) =x|x)

is true if and only if |x) is a position eigenvector, having
eigenvalue x. (X designates the position operator or ma-
trix.)

The same is true for any operator:

Qo) = w|o)

is an infinite set of equations which, if you are given the
operator () (that is, given the matrix that represents £ in
some basis), you can in fact solve to obtain the eigenvalues
o; and the eigenvectors |@) (that is, the column matrices
representing the eigenvectors in that basis).

Since we still know nothing about the momentum opera-
tor, we have no idea what its representation is in the posi-
tion basis (that is what we are trying to find out!). But we
do know what its representation is in the momentum basis,
its “own eigenbasis” (if I may be permitted the tautology):
It is diagonal, and the diagonal elements are its eigenvalues,
whatever they may eventually turn out to be.

Now, finally, let us turn away from our discussion of the
position operator and seek to actually find another opera-
tor. What operator shall we pick?

SIMP: Momentum!

SALV: Why?

SIMP: What do you mean, why! Isn’t that what you’ve
been leading up to? Are you...

SALV: Calm down, Simplicio! I'm just asking why it is that
we care so much about momentum.

SIMP: Well, it is conserved.

SALV: Right. Around the time of Newton, there was great
confusion about the notion *“quantity of motion” of a body.
What was the important quantity? In the end, it was decid-
ed that there are two important quantities, mv and %mvz,

and that other possible quantities (y2mv®,3mv’, etc.) are
unimportant. They are unimportant because, although we
can measure them if we like, they are not conserved. And
why are mv and mv* conserved?

SAGR: 1 remember that from classical mechanics, Salviati.
Momentum is conserved because nature is symmetrical re-
garding translation through space, and energy is conserved
because nature is symmetrical regarding translation
through time. Because there are three space dimensions,
momentum has three components; energy is a scalar be-
cause time is one-dimensional. It is all explained nicely by
Marion.’

SALV: Right, Sagredo. Also, because nature is symmetri-
cal regarding rotation in space, angular momentum is con-
served, and because in weak interactions nature is #of sym-
metrical with regard to mirror-image experiments, parity is
not conserved. Well, we need none of this; we just bring it
out in order to provide us with a hint as to how to find, or
rather how to define, the momentum operator. Clearly,
translation through space is the path we should follow
(and conservation under translation through space is the
definition we are seeking).

SIMP: But if we are starting from first principles how do we
know that there will be symmetry with regard to transla-
tion through space (and hence an associated conserved
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quantity, which it would be natural to name “linear mo-
mentum”)?

SALV: Wedon’t. (We can seek such a quantity in our mea-
surements; and of course we do find it, and that does indi-
cate that space is symmetrical with regard to translations.)
All that we are saying is, suppose such a symmetry exists
and such a conserved quantity is found, what must its oper-
ator be? That is all that we are aiming to accomplish.

So we are motivated to consider the spatial translations
operator, T. We are now broadening our definition of ““op-
erator” to include any matrix, regardless of whether it hap-
pens to correspond to a physical observable. T'is to be that
matrix which, when we let it act on (multiply) the state
vector, causes the state vector to move (rotate) in such a
way that its corresponding wave function is displaced
(translated) in Fig. 12; that is, the particle has moved in
the x direction.

We can consider active translation, or passive transla-
tion: In Fig. 12, active translation is defined as moving the
dashed curve (the wave function of the particle) a certain
amount, g, to (say) the right.

Now doing this looks a bit dangerous. It requires muck-
ing around with the state vector in Hilbert space. We are
trying to avoid making any unnecessary physical assump-
tions. So instead, let’s play it safe and choose a passive
translation, which is defined to be merely a relabeling of
our position axis so as to move the scale an amount a to the
left. Since only a relabeling of the axis is involved here, no
physics is involved at all. But! Miracle! The result is exactly
the same as if we have used the active approach. The proof
is apparent in Fig. 14, which has been produced from Fig.
12 by either an active or a passive translation of @ = 1 unit.
You can’t tell which! (This occurs because Hilbert space
has no absolute orientation.)

Now the result of this translation is clearly that the state
vector has moved in Hilbert space (since it now has a dif-
ferent projection on each of the infinite number of axes).
We have defined T to be the operator that produces this
movement, when it “acts on’’ the state vector:

Ty =1¢).
where |¢) is the original state vector, and |¢') is the state
vector after our relabeling of the x axis.

1
yx)
|
PN
//’ \\\ -
~ ,5// S \
’ ~ / S~
\\-—/ \~N\
\\\
o) 1 1 1 1 X
=1 -0.5 0 0.5 |

Fig. 14. The result of the translation operator T acting on the state vector
is to shift the wave function of Fig. 12 to the left by one unit. That is,
whatever it is that you are measuring the position of has shifted by 1 unit
to the left (or we have moved our scale 1 unit to the right).
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Now, recall that we carefully lined up the state vectors
associated with every other physical variable to coincide
with the particular state vector that is involved with posi-
tion. Relabeling the x axis clearly cannot affect the relative
probabilities of obtaining various values for other physical
quantities, so if we want to keep all the state vectors togeth-
er (as we do, so that the complete physical state of a parti-
cle will be always represented by a single state vector in
Hilbert space), we must hope that if we now act on all the
vectors, in all these superimposed Hilbert spaces, with 7,
the result will be that all the other state vectors are moved
so that they stay with the position state vector; and, more
importantly, that 7 moves all the eigenvectors of all the
other operators in just such a way that they maintain pre-
cisely their original relationship with their state vector; in
particular, each state vector’s projection on its eigenvec-
tors, we hope, will remain the same.

Now, the translation operator T (some matrix) rotates
the position state vector so that it points in some new direc-
tion in Hilbert space. Since all the other state vectors have
exactly the same components as the position state vector
(being coincident with it), they will be rotated exactly the
way the position state vector is rotated, and so they will
stay with it, as desired. So far so good! We still need to show
that the translation operator shifts all the eigenvectors of
the various operators appropriately. Let’s leave this as a
“loose end” for now; we will return to it!

How do we go about connecting Hilbert space (e.g., Fig.
9) with its corresponding wave function (Fig. 12)? The
wave function is, of course, a display of the components of
the state vector. How do we obtain those components, from
Hilbert space, in order to construct a probability curve?
Consider Fig. 13. The individual components of the vector
Pin (for example) the x'y’ basis can be obtained as follows:

(1,0) (") =x (01 (") =y,
J Y

where (1, 0) and (0, 1) are the eigenvectors of the x'y’
operator, in its eigenbasis: Just carry out the matrix multi-
plication involved, and you will see that this is so.

Notice that instead of writing each eigenvector as a col-
umn matrix,

|V><:>((1)),

we now find it useful to represent each eigenvector with a
row matrix,

(V|e<(1,0).

Also, notice that we have jntroduced Dirac’s (¥ | nota-
tion for a vector that is to be represented in this manner.
Dirac called | V') the “ket” version of the vector, and (V|
the “bra” version, so that, for example, we call |x) a “posi-
tion eigenket.”®-

So we now see that to obtain the components of an arbi-
trary vector (say the state vector, |#) ) in the position basis,
we just form

{x:1¥) = ¥(x,),
where (x, | are the position basis vectors. That is, we “pro-
Ject |¢) onto the position basis.” We see that (x;|¢) is a
number, and there are infinitely many such numbers, and

that appropriately plotted they form the wave function
(Fig. 12); that is,

(x|¥) = ¢(x). v (1)
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We will now make use of Eq. (1) in studying the effect of
the translation operator 7. We will only need an infinitesi-
mal translation, so the operator can be written

T(e)=1+¢eK

where [ is the identity (unit) operator, which of course
does nothing to any vector (try it!) and € is an infinitesimal
real number. K is some as yet unknown operator.

Apply this infinitesimal translation operator to the state
vector, and then form the new probability curve, by pro-
jecting the new state vector onto the position basis:

x|+ eK) [¢) =9/ (x),

where ¢'(x) is the dashed curve shown in Fig. 14, which
has the same shape as the curve ¥(x) in Fig. 12, but is
shifted to the left by a certain amount, infinitesimal in the
present case.

But if we know ¢(x), then we know what ¢’ (x) is: Con-
sulting Fig. 15, we see that

Y(x) = ¢(x) +§ﬂ+
dx

where ¢ is an infinitesimal distance that ¥'(x) is shifted
relative to y(x). (Positions are represented by real
numbers, so this shift in position { must also be a real num-
ber with *“dimensions” of “length.”) This is just a Taylor
series. So we have

T+ ey =px) + £ 4

dx
or

(x|I|#) + (x|eK |¢) = P(x) + §%+

or

(since I |¢) = |¢), because the identity operator I does
nothing; and since € is just a number) or

¥ + ek [9) = 90) + £ 2Ly

Yix)

slope of
y{x) ot x

Fig. 15. The result of a shift, such as that between Figs. 12 and 14, is
analyzed. The new wave function = the old wave function plus £ times the
slope of the old wave function (to adequate accuracy).
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or
uwm=§%n 2)

to first order. The number { /€ s a ratio of infinitesimals, so
itis itself a finite number. The infinitesimal number § is real
because it is an infinitesimal chunk of space, and Pytha-
goras tells us that space is real numbers. That is physics.
The infinitesimal € is also real, because to this point, our
Hilbert space has been a real Euclidean infinite-dimension-
al space, as we have ourselves constructed it—no physics
involved at all. In sum, then, { /€ is a real number.
Identically, if L is the operator producing translation

through time, we have

)

a b

uMW=§%mw=¢

where « is an infinitesimal quantity analogous to € in Eq.
(2), and 7 is an infinitesimal chunk of time, which will also
be a real number.” Notice that this is a statement about the
projection of certain vectors onto the position basis. Un-
projected, the equation reads

Ly) = (n/a)[9). (3)

Now, what are the values of the ratios { /€ and /a? We
are free to choose these values as we please. Consider the
ratio § /€, for example. While § represents a certain fixed
distance (the infinitesimal distance that the wave function
has been shifted), eis as yet undetermined. The effect of the
product €KX is to generate this specific shift, but this puts no
restriction on either € or K separately. We can choose € to
have any magnitude and units that we desire, recognizing
that K will then have units reciprocal to whatever we
choose for € and its overall magnitude will be inversely
proportional to the magnitude we choose for €. In short,
choosing a specific value and units for the ratio { /€ simply
boils down to choosing the relative magnitudes of € and K
and how units are to be apportioned between them. A simi-
lar argument applies to the ratio /a. Let us, without prej-
udice, use the symbol % to represent our chosen value for
the ratio £ /€ and let us also choose /a = § /€.

Furthermore, I choose to divide both sides of Eq. (2) by
i, and multiply both sides of Eq. (3) by i. The result of this
activity should please you:

(K /|0y = — -2 (x), )
dx
(L) |9y = ifi|y). (5)

SIMP: Equation (5) is the time-dependent Schrodinger
equation; your operator (iL) is the Hamiltonian, H. And
Eq. (4) shows that your operator (K /i) is P, the momen-
tum operator! I am indeed pleased!

SAGR: Furthermore, I noticed earlier that Q|w) = w|w) is
the time-independent Schrodinger equation, if we choose
Q) = H. But there is a problem! I have worked an example,
6 = 7/2, using your sample operator,

sin 9)_( cos(7/2)
cos @/ \ —sin(7/2)

(2 o)
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sin(77'/2))

—sin 6 cos(7/2)

( cos 6

with the following results for ) |w) = w|w):

(% D))

and

(2 ) -—(%)

If you carry out the matrix multiplication on the left
sides, you will verify that I have correctly solved the eigen-
value problem for this operator. But notice that the eigen-
values w, which are supposed to be the values of your phys-
ical quantity, are imaginary!

SALV: That is no difficulty, Sagredo, since you are solving
the wrong problem: You are starting with an operator (ma-
trix) and finding the eigenvalues. No one has said that ev-
ery matrix must represent some physical quantity! What
we are doing is precisely the opposite to what you have just
done: We are asserting that we require that the eigenvalues
be real, since they are physical quantities; we are putting
additional restrictions on them (conservation laws); and
then we are tying to solve for (find) the operator invoived.

But we actually do have a severe difficulty, which your
example nicely reveals. Look at your eigenvectors! They
include components that are imaginary! Vectors in Hilbert
space suddenly have some imaginary components! How
can this be? And it is a disaster for us, because our state
vector’s components (or their squares) are supposed to be
probabilities, which must be real (and nonnegative)!

This is all very surprising, because we built Hilbert space
as a rea/ infinite-dimensional space. It is important that we
understand why this has happened to us. It can only (since
we have done nothing else) be because we put the physical
quantities down the unit diagonal, creating the equation
Q|w) = wlw). What becomes of this equation when we

change basis? Our eigenvalues are scalars, and therefore
invariant (under rotations in Hilbert space). But we have
no guarantee that, to maintain the constructed (and then
asserted) truth of Q|w) =w|w), the eigenvectors |w)
won’t develop some imaginary components. In fact, that
must be what is happening.

This tells us that, in general, in a vector space where
Qo) = w|w), the vectors have complex components.
While this just about completely destroys what was left of
our ability to visualize our infinite-dimensional space, with
its state vector moving about (its projections on the eigen-
vectors of the various operators representing the probabili-
ties), it certainly does not invalidate it. Our state vector still
has just as many components as there are possibilities, and
if we continue to represent the probabilities as functions of
the projection of the state vector onto each eigenvector
(summing to unity ), our sole actual problem is the fact that
our state vector’s components are now (in general) com-
plex, while the probabilities must be real and nonnegative.
SIMP: Can we save the situation?

SALV: Yes, we can because (remember!) we still have
some freedom left in our construction of Hilbert space. We
now want to use that freedom to ensure that even though
the components of the state vector are complex, the proba-
bilities are real. To accomplish this, recall that from
x+y=1,and x> + y* = 1,and x> + y* = 1, and so forth,
we tentatively selected the “x? 4 y* = 17 version of Hilbert
space. Now, remember that it is the probabilities (x*and y*
in the case we have chosen) that must be real. We need
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have no concern that the probability amplitudes (x and y)
have turned out to be complex, because they are not ob-
served quantities. The solution to our difficulty now be-
comes apparent: Instead of picking x* + > =1, pick
x*x + y*y = 1 and we are back in business. We can do this,
of course, only because we discovered earlier that we had a
certain amount of freedom in how we constructed Hilbert
space. But at this point we lose much of that freedom. It is
important to notice that our new (and final) method of
constructing probabilities (from complex amplitudes) is
required (not an option), if we are to be able to discuss
physical probabilities intelligently at all. Underlying every
physical probability, we discover, lies a complex probabili-
ty amplitude.

Our state vector components are now complex numbers,

i€,
and y=a,e"”

i0,
xX=a,e

— 6 i6 . . .
andsox*x =a,e” “'a,e"' = a? which is real; so is y*y, as

required. We must have a? + a2 = 1, of course.

So all that remains of our freedom, in constructing Hil-
bert space, is the freedom to choose (or change) the phases,
anywhere or everywhere, at will.

The fact that our probability amplitudes are now com-
plex requires us to reexamine Hilbert space and see what
other changes are needed. For one thing, the length of a
vector (recall) was v x* + y*, where x and y are the proba-
bilities (for the case x + y = 1), or the probability ampli-
tudes (for any other case). The special case that the vector
is on the x axis (y = 0) gave yx* = x, = | if normalized;
the x axis is then the vector (1, 0), a basis vector of the “xy”
operator. We want to keep that arrangement! Now, we've
never actually had to use the length of a vector for anything
other than this, so we can redefine length so as to retain the
desired property. What’s needed is

length = {x*x + y*y
because then, in the case of the x axis, we obtain

length = \/al e "a " +0= a,,
= 1 normalized.

Itis also convenient to redefine the (V| version of vector
| V') to be (v¥,v%,...) instead of (v,,v,,...), for if we do so,

vy
)
(V|V) = (vFo¥,...)

=¥, +v¥v, + ..

= (length of |V))?

Something else then follows:

Wy
w,

(V|WH* ={ (vhvt...
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= (v,,0,,...)

= (wwi,...) =(W|V),

that is,
(VW =(W|V). (6)

Now how about operators, which you recall are each
represented, in a basis, by a matrix? Operators are of course
made up of eigenvectors, that is, of vectors, and vectors are
now permitted to have complex components; so we can be
sure that in general the matrix elements of operators are
now complex numbers. _ :

Finally, recall that the operator 7= I + €K causes an
infinitesimal translation through space and I + aL causes
a similar infinitesimal translation in time. Earlier we
thought of € and « as being real, simply because our Hilbert
space was real. How are matters changed now that our
Hilbert space is complex? Just as we were free to choose the
overall magnitudes and units of € and « earlier, so we are
free to choose the phase of € and a now. The operator €K
remains fixed in its effect, so different choices of phase for €
amount to different choices of overall phase for K. Nothing
forces us to choose the relative phase of € and K in any
specific manner, as long as the overall phase of their prod-
uct remains the same.

In particular, if we choose the phase of € so that € is equal
to a real number times /, then the left side of Eq. (4) is
effectively multiplied by i, producing

K 9) = — il (x|uy). 7
dx

Similarly, if one chooses the phase of @ so that  is equal to
a real number times — i/, then the left side of Eq. (5) is
effectively multiplied by — i, producing

_,d
L) =Ly, (8)

Now Simplicio will want to tell me that it is X and not
(K /i) that is the momentum operator P, and it is L, not
(iL), that is the Hamiltonian! This should come as no sur-
prise: If we redefine the phase of € so that it is purely imagi-
nary instead of being purely real, the phase of K will also be
redefined. We’ll see why these particular choices of phase
for € and a are especially convenient in due course.
Now let 2|V} = |V') or, explicitly,

((011 “)12) (UI)_(wllUl +0)12U2)_(U;)
0y 0p)\0,)  \oyv +wnv,) v3
and let ‘
(V| =(r|Qf,
where Q)Y called the adjoint of the operator Q, is to be

determined.® Explicitly,
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T T
A - Wy Wy
(v1*,05*) = (v¥v¥) + +
@y Wy
= (o], V¥ + o}, 0%, ol,vF + 0l,vh)
or

(U{) . ((‘)ﬁvl + wﬂ”z) . (wllvl + a)nvz)
v C‘)TZTUI + w?zlrvz Wy V) + @00,
and comparing the last, we see that

ta TR
Wy =Wy, Wy = Wy,

a)Jlrz* =w,,;, and a’er’zk =Wy,

or, generalizing, ), = »¥. I hope this repetition of stan-
dard material from an introductory quantum mechanics
course does not bore you.
SIMP: Keep going.
SALYV: An operator that is self-adjoint (that is, an operator
for which it happens that Qf = Q) is called a “‘Hermitian”
operator.

We are now in a position to tie up that loose end that we
left. What the operator T" does is

T|¥(x)) = |$(x +€)),

that is, the operator T'simply shifts the wave function to the
left by € (you may want to study Fig. 15 again to review
this).

From our definition of the adjoint of an operator, we
have

G)|TT=(Px+e)l;

hence,

(W) |TIT|P(x)) = (P(x + ) |h(x + ge) ).

The right-hand side, according to our new definition of
the length of a vector, is just the square of the length of
[¥(x + €)), which is unity for a normalized vector, so

@) |TTY(x)) =1
and since (#(x)|¢¥(x)) = 1 also, we conclude that
T'T=1

Any operator having this property we will call a “uni-
tary” operator, and unitary operators have the important
property, obviously, that they leave the lengths of all vec-
tors they act on unchanged. They have a second important
property: The projection of one vector on another is un-
changed if both vectors are acted on by a unitary operator:
The projection of |(2) on the position eigenbasis |x), for
example, is (x|Q1). Now act on |2) and on |x) with a uni-
tary operator 7. The two new vectors are 7|{}) and T |x).
The projection of T|Q) on T |x) is {(x|TTT|Q) = (x|Q)
which indeed is unchanged.

This result does finally tie up that “loose end” we left:
Since T is unitary, it shifts all the eigenvectors of all possi-
ble operators in such a way that their projections on the
common state vector remain unchanged, which is precisely
what we wanted.®

Having tidied up the loose end, let’s move forward.

In the case of translation through time, we are seeking
the quantity (we will of course name it “energy”) which is
conserved as a result of time-translational invariance.
Now, all we know about any projected measurement of any
quantity is a curve such as that in Fig. 12 (and we still don’t
know the shape of the curve!) In general, Fig. 12 indicates
that identical experiments can give nonidentical results,

1098 Am. J. Phys., Vol. 58, No. 11, November 1990

which implies nonconservation because it implies that one
cannot expect time-translational invariance in the ob-
served quantity.

This looks like a pretty fundamental setback, and if we
were really trying to develop quantum physics from
scratch, we might go far off the track at this point and
incorrectly conclude that our dashed curve in Fig. 12 must
have a sharp peak, if a conserved quantity is to exist. But
starting to make assumptions about the nature of the
dashed curve would be contrary to the spirit of our entire
program. Fortunately, there is another way, albeit not a
terribly obvious one: We will focus our interest on quanti-
ties that on average are conserved because of the time-
translational invariance of their wave functions.

The average value of a unity we call its “expectation
value.” Look at Fig. 12. Suppose you had a thousand parti-
cles, each in this particular state (solidifying the dashed
line for a moment!), and you measured the position of ev-
ery one. What would your average result be? It would be

(X) =3 Pex, = 3 AGx 9y Hix, [0) I,

where the first bit is just the usual definition of “average”
and the second bit follows from our new (and final!) choice
of Hilbert space structure, namely, that probability
P(x;) = *(x,)¥(x;); and, finally (X ) is the symbol we
will use to mean *‘expectation (average) value of position,
x.”

JAX) = Z <1/’|xi><xi’1/’>xiy

where we have used Eq. (6). Recall that X |x) = x|x), so
(since, x;, being just a number, can be moved anywhere),

(XY= 3 () x|
= z (WX |x,) {x; {¢)

= XS b tul .

[

But
1 0
le,-)(xfl = (O) (10) + (1) (o1

(6 0+l V=0

using the rules of matrix multiplication and addition, '’ so
the sum is the identity operator I, which does nothing and
may therefore be removed, so

(X) =YX 4.

There is nothing in the foregoing that depends on any
special property of the position operator, so

(Q) = @),

where () is any operator.
Now let H be the operator that is associated with energy;
that is,
H|E)=EI|E)
by definition (where E is the energy eigenvalue).
“Energy” we define as that quantity that is conserved

because of time-translated invariance. What we mean by
this is that the time-translated state should have the same
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energy (or rather, average energy) as the untranslated
state. Now the untranslated state is |¢/), and the translated
stateis (I + aL)|¢) = |¢) + aL |¢) soourrequirement is
that

(9] + a* (L HHID) + aL |9} = W{H |9,
(0] + a* L Y |9) + aHL |9} = (W{H [9),
(OIH |0 + a* WIL TH ) + (Y| HL |9) = GIH |4,

ignoring the second-order term (a*a), or

a*LTH+ aHL =0

or
HL= — (a*/a)L'H
and so
HL|E)= — (a*a)L'H|E)
but
H|E)=E|E)
S0

H{L|E)}= — (a*/a)E{L'|E)}.

Now [+ aL is unitary (for the same reason that
T = I 4+ aK is unitary). So

U+a*LYT+al)=1
or

I+a*L"+aL=1
or '

L'= — (a/a*)L , 9)
and our previous equation becomes

H{L|E)}=E{L|E)}.

The conclusion from our last equation is that the opera-
tor H, actingon L |E ), stretches L |E ) by afactor E. So we
recognize L |E ) asbeing an energy eigenket. Thatis, |E ) is
an energy eigenket, and when the operator L actson |E ) it
produces an energy eigenket L | E ). But the simplest opera-
tor thatacts on | E' ) and produces an energy eigenketis H."'

And so we have found the operator H. Itis L.

The same kind of argument applies to translation
through space, meaning that P can be identified with K. So
if we accept the idea that L is H and K is P, and if we choose

the phases of € and o as discussed above Egs. (7) and (8),
then

(x|P|¥) = — if -2 (x|y) | (10)
dx
and
Hiy) = x|y, (1)
dt

which we recognize from quantum mechanics.
Equation (10) states that in the x basis, the operator Pis

P —in?
dx
Now let’s project the momentum eigenvalue equation
Pip) = plp)
onto the position basis, i.e., form
(x|P|p) = p{x|p) N
or
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5 Y, (x)
i Y, (%),
where ¢, (x) = (x|p).

The solution to this differential equation is
¥, (x) = (x|p) = [1/(27#) '] P~ where the
1/(27#)"* is customary normalization (you may verify
this solution by substitution), and where, apparently, p is
any number at all—well, no; p must be real. For if it were
imaginary, that is, p = ib, then

(xlp) — [1/(2Trﬁ)1/2]e7bx/ﬁ’

which goes to infinity for either large positive, or large neg-
ative x (depending on the sign of b); and no |p) can have a
projection on an |x) that is greater than 1, on logical
grounds; so on these logical grounds, p is real. The eigen-
values of p are any real number!.

So the projections of a typical momentum eigenket |p),
on a typical position eigenket |x), is

1 .
x — elpx/ﬁ
< |‘p ) ( 2 7Tﬁ) 1/2
= (cos £x + isinﬂ) ,
( 2 ﬂ.h) 172 ﬁ h
which is never zero, for any choice of real numbers x and p;
that is, we have finally (thank heavens!) demonstrated that
we are driven to “possibility 3.”
SIMP: How does that show that we are in a “possibility 3”
situation?
SAGR: It shows that no position eigenket is perpendicular
to any momentum eigenket. (If one were, you could rotate
around the momentum eigenket until your position eigen-
ket was coincident with any one of the infinitely many mo-
mentum eigenkets that are (all) perpendicular to a given
momentum eigenket, and you would see that you were in a
“possibility 1> or “possibility 2” situation.)
SALV: Correct. Now let us return to the question of why we
chose the phase of € and a so that we were led to Egs. (7)
and (8), and thus to the familiar equations (10) and (11).
What are the consequences of making another choice of
phase? We know that the eigenvalues of P and H represent
possible values of momentum and energy, respectively, so
they must all be real. An operator whose eigenvalues are all
real must be
SIMP: Hermitian, I know that!
SALYV: Right! Now, note that Eq. (9) implies that L
(which we are identifying with H) will only be Hermitian if
the phase of @ is + i. Similarly, K will only be Hermitian if
the phase of € is + /. Thus the identification of L with H,
and K with P, only works if the phases are chosen this way.
The choice of signs is purely conventional, though if we do
choose the phase of & tobe — /and the phase of e tobe + |,
the phase velocity of the wave function for a free particle is
conveniently in the + x direction when E and p are both
positive. We are done.
SAGR: Note quite! Suppose there are two possibilities (for
example, the familiar case, “the particle might have passed
through slit A; or slit B”). How do we calculate the final
probability?

SIMP: Let me answer that! The final probability is a phys-

~ ical probability, so underlying it is, necessarily, a complex

probability amplitude. Once we have that amplitude, we
have the probability! So the question is, how do we calcu-
late the amplitude, from the probabilities and/or ampli-
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tudes of the two possibilities? If we were to add the probabi-
lities, we would always get a real number, so our final
amplitude would not be complex as we know it must be;
besides, it seems silly to add probabilities to get an ampli-
tude. So I guess (since I must assume that the final ampli-
tude depends somehow on what has gone before) that the
final amplitude is the sum of the amplitudes for the two
possibilities. Surely I am right?

SALV: You are right. That fact leads to many interesting
consequences that do not appear in the case of the nonphy-
sical “probabilities” that we are accustomed to in daily life
(the probability of dealing an ace is not 4, it is 0 or 1 de-
pending on whether or not an ace is top card. It is only our
ignorance of the facts that simulates a probabilistic situa-
tion. Again, the probability of getting heads is not | when
you toss a coin, it is O or 1 depending on exactly how you
toss the coin. In this case it is lack of skill, not ignorance,
that simulates a probabilistic situation).

SAGR: So, by insisting that momentum be the quantity
conserved as a result of translational invariance, we find
that momentum stands in a “possibility 3” relationship to
position, which in turn implies that position will be uncer-
tain if we measure momentum and vice versa. This is the
core of the Heisenberg uncertainty principle!

SALV: Yes, and that is an exciting conclusion. I am sorry
our result for the eigenvalues of momentum turned out to
be so dull (any real number). But you can get a terrifically
exciting result if you go on now to angular momentum—
the eigenvalues are quantized! Shankar works it all out very
nicely.'? Also Shankar shows how Hamilton’s equations
(and hence F = ma) follow, in a certain limit, from quan-
tum mechanics."?

SIMP: But Salviati, this is sad! You have shown that quan-
tum mechanics is almost a triviality! The universe has lost
its magic and its mystery!

SALYV: Simplicio, you can’t have it both ways. You started’
by complaining about the unreasonableness of the uni-
verse, and now that I have shown that it is remarkably

reasonable, you complain that the universe is too dull.
There’s no pleasing you!"*
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A simple experiment designed to study nonpropagating hydrodynamic solitons of (0, 1) and
(0,2) modes is discussed. A brief review of the properties of the soliton is provided.

1. INTRODUCTION

In 1834, the Scottish scientist John Scott Russel made
the first documented observation of a solitary wave on the

surface of the water in a canal. He described the wave as

“...a rounded, smooth and well defined heap of water,
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which continued its course along the channel apparently
without change of form or diminution of speed.”' He also
coined the term “solitary wave” in his paper “Report on
Waves” (1844). It was not until about 60 years later that a
theory of the solitary wave phenomenon was developed.
Two Dutch scientists, Korteweg and de Vries, derived the
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