How can planets be heavier than the disks that formed them?

by Emma Foxell | Oct 15, 2018 | Daily Paper Summaries | 0 comments

Title: Why do protoplanetary disks appear not massive enough to form the known exoplanet population?

Authors: C.F. Manara, A. Morbidelli, and T. Guillot

First Author's Institution: European Southern Observatory, Germany
Status: Accepted to A\&A Letter, open access

Planets form from the dust and gas in protoplanetary disks, so we expect that the mass of these disks must be at least the same as the mass of the resulting planets. As this process takes millions of years, we cannot watch a given disk form planets. So the authors of today's paper compare young protoplanetary disk masses with the masses of exoplanets that have already formed.

Measuring masses

The authors used all confirmed exoplanets with stellar and planet masses. 80\% of exoplanet masses were directly probed using the radial velocity technique, which gives a minimum mass ($\mathrm{M} \sin \mathrm{i}$, where i is planet inclination). They used protoplanetary disks from the two youngest star-forming regions (1-3 Myr old) extensively studied with ALMA. ALMA measures the amount of flux at millimetre wavelengths beyond 10 AU . By assuming a disk temperature and an optically thin disk at these wavelengths, they can calculate the dust mass of centimetre-sized grains. The total mass of the disk is calculated assuming the gas has 100 times the dust mass (represented in yellow in Figure 1). Stellar luminosities combined with distances from Gaia DR2 were used to estimate stellar masses.

Comparing dust and planet masses

To try make it a fair comparison, the authors compare the masses of planets and disks as a function of the mass of their star. Low mass stars with <0.3 solar masses have mainly rocky planets (i.e. < 10 Earth masses) when in multiplanet systems. Figure 1 shows the median mass of dust in protoplanetary disks is just 20-30\% of the total mass of exoplanets around low mass stars. In fact, even the top 10% of disk dust masses are about the same mass as the median planet system mass.

Subscribe
Enter your email to receive notifications of new posts.

Email Address
Subscribe

Follow us on Twitter
Follow @astrobites

Like us on Facebook
Astrobites
4.7K likes
Like Page vember $15^{\text {th }}$

More Posts About
astronomy accretion
stellar evolution theory
astrophysics cosmology
planetary science
protoplanetary disks
galaxies solar system
AGN galaxy evolution
habitability
astronomical methods
observations black holes
dark matter
planet formation Kepler
radio astronomy transits
star formation stars
binary stars instrumentation
exoplanets simulations
spectroscopy statistics
supernovae

Posts by Category
Applications
Career Navigation
Classics
Crossposts

About v Latest Research ^ Beyond astro-ph v Guides v
astrobites

Figure 1: Mass of disk or planets as a function of stellar mass. Masses of single exoplanets are shown by green circles and blue diamonds represent the total mass of planets in known multiplanet systems. Disk dust masses are shown in red (with empty circles representing the Lupus region and empty squares for the Chamaeleon I region).

The same disks are shown in yellow, but with the disk mass $\times 100$ to indicate the total mass. Right: Coloured regions contain the 10th-90th percentiles and dashed lines represent the median. Figures 1 and 2 from today's paper.

To investigate the full range of stellar masses, the authors compare the disk dust masses with the core masses of the planets in Figure 2. Core masses represent the fraction of a planet's mass which is rocky, and are calculated from models which use the density (found from the total mass and radius) to constrain its gas to heavy element ratio. This is a better comparison than extrapolating the total mass of the disk. Figure 2 shows that the median disk dust masses are only $20-30 \%$ of the median exoplanet masses for stellar masses up to 2 solar masses. Comparing disk and core planet masses assumes that nearly all the dust grains available for accretion are up to 1 cm in size, where ALMA is sensitive to. There is little dust within a few AU where planets are found, so their presence means either they migrated or were produced by accretion of pebbles larger than 1 cm .

Quick Notes
Undergraduate Research

Our Sister Sites
Astrobitos (Astrobites in Spanish)
staryab (Farsi)
Oceanbites
Particlebites
Evobites
Envirobites
Softbites
Chembites
BiteScis (K12)
PERbites (Physics Education Research)

OncoBites (Cancer)
ImmunoBites

More Astronomy
AAS
astro-ph
voxcharta
arXiver
AstroBetter
APOD
astrobites

Figure 2: As in Figure 1, except planet masses show the core mass of single planets in green and the sum of the cores in multiplanet systems in blue. Figure 3 from today's paper.

Explaining the discrepancy

These results suggest that the dust masses in 1-3 Myr old disks are lower, or at most comparable to, the amount of heavy elements in exoplanet systems. Clearly, the extra mass has to come from somewhere unless our measured disk dust mass or planet formation theory is wrong. The current pebble accretion theory is very inefficient, with only a small fraction of available pebble-sized dust clumps actually becoming part of the growing planet. To form the 20 Earth-mass core of Jupiter, required 350 Earth masses of pebbles to accrete onto a rock half the size of our Moon.

From planet formation theory, the authors assume that the vast majority of heavy element mass in the disk are pebbles up to 1 cm in size as measured by ALMA. However, if a significant fraction of the material is already in pebbles larger than 1 cm then true disk dust masses could be more than ten times larger. If most of the material is already in planetesimals or planet cores, then these could have formed when the disks were younger than their 1-3 Myr and more massive. However, the faint CO emission lines - a tracer for disk gas - suggests that the gas to dust ratio is much lower than the 100:1 ratio in the interstellar medium, requiring a very efficient gas removal mechanism.

Alternatively, disks could be replenished by new material from the interstellar medium. The total amount of gas and dust available while the planet is forming would then be much greater than the amount of dust mass observed at any given time. However, it remains unknown how many disks actually accrete from the interstellar medium, and whether this is continuous or sporadic.

Resolution

To solve the mystery of planets appearing heavier than the disks, we need to push
could confirm whether this is a viable mechanism for increasing the dust available for forming planets.
\mathcal{L} About the Author

About Emma Foxell
I am a PhD student at the University of Warwick. My project involves searching for transiting exoplanets around bright stars using telescopes on the ground. Outside of astronomy, I enjoy rock climbing and hiking.

Related Posts:

Missing Spirals and Forming Planets

Where to Look for Baby Planets

The Planets in the Gaps

In the Shadow of a Circumstellar Disk

Leave a Reply

```
Enler your cormme-t here
```

