
LabVIEW Part 1

Introduction

LabVIEW is a standard data acquisition and analysis language within the
scientific community. It is a highly effective tool for experimental control
and data collection, and necessary for further experimental physics work in
physics lab.

LabVIEW is unique among computer languages in that it is a graphical
programming language. A LabVIEW program is more like a flowchart than
like a typical Python or C++ program. This takes some getting used to, and
it has some distinct disadvantages; but it does allow for rapid development
of laboratory-specific applications.

There are two windows for each LabVIEW program: the “front panel”
and the “block diagram”. The block diagram is the program, the front panel
is the user interface to the program. The menus and tools available to you
within LabVIEW depend on which window is currently active. You can
switch between the two windows at any time by pressing ctrl-e. Generally
when starting a new LabVIEW program, one will first place the inputs
(buttons, numeric controls, output displays, etc) on the front panel; then go
to the block diagram and “wire” these elements to the desired programming
elements such as various types of loops, data-collection routines, equation
blocks, case and sequence structures, etc.

Something to keep in mind regarding LabVIEW is that different colors,
widths, and textures of “wire” carry different types of information. Floating-
point numbers, for example, are thin orange lines while integers are thin blue
lines. Arrays of floating-point or integer numbers are thicker orange or blue
lines, and so on up to “Dynamic Data Type” (DDT) lines which can carry
complex bundles of information and are represented by fat blue-grey braided
lines.

There are many different types of tool available in LabVIEW, and it’s
important to use the right one for the job. You use a tool that looks like a
pointer for grabbing an object and moving it around, and another tool that
looks like a spool of wire for connecting different terminals with wires, and
so on. The easiest way of dealing with tool selection is usually to set it on
automatic. This way, LabVIEW observes what you’re doing, where you’re
clicking, and selects the right tool for you automatically, most of the time.

Right-clicking is a very important part of the whole LabVIEW experi-
ence, too. Right-clicking on an object —or a part of an object— calls up a
context-specific menu which nearly always has the option you want.

1



Finally, there is extensive help built in to LabVIEW. If you open the
context-specific help window, it will show you basic information and links
to more detailed information for whatever you are currently pointing at,
which is helpful even if you’ve been using LabVIEW since 1989.1

Procedure

Thermometer, in gruesome detail

1. Start LabVIEW, and open a blank vi.2

2. Right-click on the front panel and thumbtack the resulting pop-up
menu to your screen. You’ll be using it frequently. . . Choose the nu-
meric tools, then a thermometer display from within that sub-menu.
Drag the thermometer to your front panel, and label it “Celsius”.
Drag a second thermometer to your front panel and label it “Fahren-
heit”. Switch to the block diagram (ctrl-e) and you’ll see the two
thermometer displays there also. The triangles on the left side of the
thermometer displays are the numeric inputs for the theromometers:
any number-type wire that is attached there in the block diagram will
result in that number being displayed on the thermometer in the front
panel.

3. Now let’s provide numbers for those thermometers. The LM35 is a
temperature sensor in a TO-92 package that, given a +5V supply
and ground connection, provides a signal voltage of 10mV/◦C. (The
datasheet is available on the course website.) Wire up an LM35 on your
ELVIS II board so that it has the necessary power supply and the signal
voltage goes to one of the AI+ connections. Wire the corresponding
AI− to ground.3

Right-click on the block diagram, tack the pop-up in place, select Input
/ DAQ Assistant, and place the DAQ Assistant block on the diagram.
A pop-up window will open and give you opportunity to explain to the
DAQ Assistant that you wish to acquire signals, analog signals, and
they should be voltage signals.4 You can then choose the channel to

1Yep. Possibly even 1988. I don’t remember for certain.
2LabVIEW programs are called “Virtual Instruments”, or .vi’s for short.
3Always remember that it takes two connections to measure voltage. Voltage is the

electrical potential difference between two points.
4Not temperature as you might expect: the temperature options here are for specific

types of thermometer such as thermistors and RTDs.

2



which the sensor is attached. The next window allows you to set the
minimum and maximum voltage that LabVIEW may expect on this
input (0V and 5V, respectively). You should also set the acquisition
mode to be “1 sample on demand”. Press “OK”: after a slight delay
the DAQ Assistant block will re-form itself to reflect its new task.

4. The data output of the DAQ Assistant block is in the form of a DDT.
We really don’t need all the meta-information contained in a DDT; we
just need the single floating-point measurement from the LM35 sensor.
Right-click the output triangle and choose Signal Manipulation Palette
/ From DDT. Place this converter on the block diagram, and in the
ensuing pop-up select “single scalar” as the desired output.

5. The output of the “From DDT” block will be a floating-point value,
which is what we want to display: but it’s scaled wrong. Since the
output of the LM35 is 10mV/◦C, we need to multiply by 100 to ob-
tain the actual temperature. Go back to the block diagram palette
(or right-click to call it up again) and select Programming / Numeric
/ Multiply (it looks like an op-amp with a × on it) and place it near
the From DDT output. Wire the data to one terminal of the × block.
Right-click the other terminal of the × block and select “Create Con-
stant”. Enter “100” in the constant, then wire the output of × to the
input of the Celsius thermometer.5

6. The equation to convert ◦F to ◦C is

F = C ∗ 1.8 + 32

We can build this equation by using a collection of multiplication and
addition blocks —it’s not hard for such a simple equation— but there’s
another way of doing equations that is more convenient when the cal-
culations are more complicated. In the block diagram palette, choose
Programming / Structures / Formula Node. Use this to draw a box on
the screen. Right-click on the left edge of this formula box and select
“Add Input”. Label the input “C”. Similarly, create an output on the
right edge of the formula box labeled “F”. Now type the formula “F =
C*1.8 + 32;” in the box. (Don’t forget the semicolon — it’s required.)
Draw a wire from from the Celsius wire to the “C” input, and another
from the “F” output to the Fahrenheit temperature display.

5You can also set this scale factor while setting up the DAQ Assistant, back on the
page when you were setting the minimum and maximum voltages. Remember that next
time, it’s a useful trick.

3



7. Take a minute or two to clean up your diagram. LabVIEW programs
can be difficult to decode, sometimes, and neatness pays off. You can
shift things a pixel at a time by selecting them and using the arrow
keys, or further by using shift-arrow combinations, and of course you
can also just drag them around. There are also some alignment tools
at the top of the window, which work on multiple-object selections.
Your block diagram should look something like figure 1.

Basic_T.vi

C:\Users\lab\Desktop\eayars\Basic_T.vi

Last modified on 4/23/2013 at 11:15 AM

Printed on 4/23/2013 at 11:27 AM

Page 1

Celsius

data

DAQ Assistant

100 Fahrenheit
F=C*1.8+32;

FC

Figure 1: Block Diagram for our temperature sensor virtual instrument

8. Try your program! Return to the Front Panel window, and press the
“play” arrow at the top left. Is the resulting display reasonable? It
won’t be exact: that requires a better calibration of the LM35, but it
should be ballpark. Right-clicking on the thermometer displays will
give you (among other options) the option of viewing a numeric display
as well as the thermometer. This isn’t as cool, but it’s more useful.

9. Now let’s put this routine in a loop so that the temperature display is
continually updated. In the block diagram palette, choose Program-
ming / Structures / While Loop, and draw a “while box” around your
existing block diagram. Items in a while box run repeatedly until the
exit condition is met. The exit condition, in this case, is the little
stop sign in the bottom right of the while loop. Right-click on the
input to this stop sign, and choose “create control”. This will put a
“stop” button on your front panel. Now when you run the program,
the temperature display will be updated until you press “stop”.

10. Optional: Give the temperature sensor something interesting to read.
Pick a resistor that would dissipate ≈ 250 mW when 5V is applied to
it, and arrange your breadboard so that this resistor is in contact with

4



the LM35. Turn the ELVIS II on and watch the temperature go up. . .
Throw this resistor out when you’re done!

11. Save your results on a flash drive or network volume: we may do more
with this vi later.

Light Sensor, in less detail

1. Build a light sensor with a PIN photodiode and the transimpedance
amplifier circuit shown in figure 2. Don’t be shy about asking for help
from your instructor on this part; it uses things you’ll learn later in the
course. For now treat this op-amp circuit as magic and don’t worry
too much about how it works. Connect the output of this circuit to
an unused AI connection on the ELVIS II board.

LF411N

5M

GND

V+

V-

5

1

2

3

6

8

7
4

Vout

Figure 2: Transimpedance Amplifier. Use an LF411 or TL061 op-amp.

2. Open up a new .vi and this time put a waveform graph on the Front
Panel.

3. On the Block Diagram, put in a DAQ Assistant block to read the volt-
age from your photodiode amplifier, just as you did before with the
LM35. This time, though, have the DAQ Assistant measure 10,000
samples at a frequency of 10 kHz. Wire the output of the DAQ As-
sistant directly to the Waveform Graph. Also have the .vi save the
measurement set to a text file for analysis by some other software
package.6 Run your program to test that everything is working so far.

6Python!

5



Check the text file also, making sure that the data is in a readable
format.

4. Now that we have a light sensor, let’s find something more interesting
to measure than just waving your hands over the photodiode. Put
in another DAQ Assistant block, but set this one to create a digital
output. A continuous pulse train at about 10 Hz would be just about
perfect. Use this digital output to drive a red LED (with current-
limiting resistance in series) on the ELVIS II board, and arrange the
layout of components so that the photodiode is looking at the LED.
(See figure 3(A).) Verify that things work as expected: you should see
a square wave on the waveform graph.

IRF510

GND GND

V+

Vin

Vin

(A) (B)

1

2

3

Figure 3: Using a logic signal Vin to drive (A) an LED and (B) a light bulb.

5. Now check what happens with an incandescent bulb. Replace the red
LED with a flashlight bulb. The digital output on the ELVIS II board
is not sufficient to supply the approximately 500 mA required by a
flashlight bulb, so use an N-Channel Enhancement-Mode MOSFET
as a switch. (See figure 3(B).)7

Observe the light level from the flashlight bulb. How long does it take
to turn this bulb on? Is the time to turn off the same as the time
to turn on? Can you estimate the “half-life” of the light from the
bulb? You may wish to answer the half-life question more precisely by

7Either an IRF510 or an FQP20N06 will work fine. They have the same pinout, which
is indicated by the numbers in the figure.

6



analyzing your data with Python or Mathematica or some other tool
with curve-fitting capabilities.

Writeup

In your lab report, be sure to include printouts of your front panel and block
diagrams for both .vi’s.

Clean up

Make sure your circuits are disassembled and parts are put back away, then
clean and dust the work area around your station.

7


