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A system with intriguing oscillatory behavior can be created using small magnets fixed to the
edges of parallel rotating structures. Under certain conditions, the two rotors will exchange veloc-
ities repeatedly in a manner similar to many coupled-oscillator systems, but without oscillation in
position. This investigation began by examining the behavior of such an oscillator constructed with
“Geomag” magnetic toys. In attempting to model the system, a simplified version of the problem
was considered: two magnetic dipoles separated along a common axis of rotation. The model’s
predictions were compared to data collected from an equivalent experimental apparatus and match
very well.

I. INTRODUCTION

Recently one of us received a “Geomag” kit as a gift.
These kits consist of a number of magnetic rods and steel
ball bearings. The bearings can be used as junctions
between the rods, allowing multiple attachments at ar-
bitrary angles so as to form geometric structures.2 The
magnets in these kits are strong enough to support fairly
complex structures, even in tension, and one that partic-
ularly caught our attention was a hanging double rotor.
(See Figure 1.)

The rotors are suspended at a single contact point be-
tween hardened steel bearings, and as a result the friction
is very low. If the angular velocities of the two rotors are
similar, they will alternately exchange angular velocity.
This behavior is similar to that of typical coupled oscil-
lators, but the “oscillations” are oscillations of velocity
rather than of position.

II. EXPERIMENTAL DATA

The Geomag coupled rotor assembly whose behavior
triggered this investigation consists of thirty separate
magnetic dipoles. We chose to work with a somewhat
more simple arrangement of two magnetic dipoles on a
common axis. To measure the motion of the dipoles,
we used two PASCO rotary motion sensors attached to
a Vernier LabPro interface. We mounted a small brass
flywheel to each rotary motion sensor to increase the ro-
tational inertia and proportionally decrease the effect of
friction in the bearings. The magnetic dipole was sup-
plied by gluing a disk-shaped neodymium magnet on the
axis of each sensor, with the magnetic moment perpen-
dicular to the axis. Both sensors were then mounted on
a stand so that the rotational axes were co-linear. (See
figure 2.)

The experimental data obtained by this method (figure
3) shows the oscillatory behavior very well. For the data
set shown, rotor 1 was given an initial spin and rotor 2
was initially at rest. The velocity oscillations of rotor
2 increase in magnitude as the angular velocity of rotor

1 decreases, until the system reaches the point where
the two rotors have the same angular velocity. At that
point, the two begin to alternately exchange velocities.
The decay is consistent with damping from a constant
frictional torque.3

III. THEORY

The field of a magnetic dipole in coordinate-free form
is given by1

~B =
µo

4πr3
[3(~m · r̂)r̂ − ~m] . (1)

The dipole moments are perpendicular to the common
axis of rotation, so ~m · r̂ = 0 and the magnetic field from
dipole 1 at the position of dipole 2 is

~B1 = −µo ~m1

4πr3
. (2)

The magnetic torque on dipole 2 due to dipole 1 is

~τ2 = ~m2 × ~B1 = − µo
4πr3

(~m2 × ~m1) . (3)

The two dipoles have the same magnitude |~m|, so the
torque has magnitude

τ2 = − µo
4πr3

m2 sin(θ1 − θ2) = Iθ̈2 , (4)

where I is the rotational inertia. The angular accelera-
tion is then

θ̈2 = −β sin(θ1 − θ2) (5)

where

β ≡ µom
2

4πr3I
. (6)

For the purpose of comparing the model with the ex-
perimental apparatus, we add a constant frictional torque
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term −bθ̇/|θ̇|, and then write the equations of motion for
each rotor:

θ̈1 = −β sin(θ2 − θ1)− b θ̇1|θ̇1| (7)

θ̈2 = −β sin(θ1 − θ2)− b θ̇2|θ̇2| . (8)

A closed-form solution to this set of equations is not avail-
able, but we can gain some insight into the problem by
looking at the sum and difference of equations 7 and 8.
Define

S ≡ θ1 + θ2 (9)

and

D ≡ θ1 − θ2. (10)

Adding equations 7 and 8 gives us

S̈ = −b

(
θ̇1

|θ̇1|
+

θ̇2

|θ̇2|

)
(11)

and subtracting them gives us

D̈ = 2β sinD − b

(
θ̇1

|θ̇1|
− θ̇2

|θ̇2|

)
. (12)

Equation 12, with b = 0, is the equation for the simple
pendulum, with the coordinate system rotated so that
the equilibrium position is at π instead of at 0. This
tells us that —whatever the behavior of the individual
rotors— the difference between the two rotors behaves
similarly to the physical pendulum. Equation 11, with
b = 0, tells us that the total angular velocity —and thus
the angular momentum— is conserved. With b 6= 0, we
can see that the angular momentum decreases in an un-
expected stepwise fashion: S̈ = −2b if the signs of θ̇1
and θ̇2 are both positive, and S̈ = 0 if one of θ̇1 or θ̇2 is
negative.

IV. SIMULATION

The equations of motion for this system lend them-
selves well to numeric solution. We used a fourth-order

Runga-Kutta algorithm, with parameters β and b chosen
to match our experimental data, to obtain the results
shown in figure 4. The unexpected stepwise decrease in
the total angular velocity predicted by equation 11 is
clearly visible. Looking back at figure 3, one can see
hints of these same steps in the sum, particularly around
t = 25 seconds, although this is at the limits of our ex-
perimental resolution.

V. SUMMARY

When coupled oscillators are introduced in undergrad-
uate physics courses, they are usually discussed in terms
of oscillating position. In this system, there is no com-
mon restoring force and the oscillations are in velocity,
rather than position. The overall behavior of the system
contains elements that link it to the behavior of other
well-known systems: damped simple harmonic motion
and rotation with friction. There is a wealth of interest-
ing behavior in the apparatus, and numerous conceptual
links to other systems. For example, the factor-of-two
change in period of each rotor at the crossover point is
analogous to the change in period of a physical pendulum
when it goes from “looping” around the axis to swing-
ing back and forth. There is also an unexpected aspect
of the theory —the stepwise decrease in total angular
momentum— which appears to be real in the experimen-
tal data. Despite the complexity of the behavior, it can
be modeled computationally without difficulty and the
model matches the observed behavior closely.
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FIG. 1: Geomag coupled-rotor configuration
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FIG. 2: Apparatus used for experimental observations. Ad-
justing the spacing between the two rotors affects the strength
of the interactions, but does not qualitatively change the be-
havior.
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FIG. 3: Experimental data. Rotor 1 was given an initial
angular velocity, rotor 2 was initially at rest.

FIG. 4: Computed behavior of the system, showing angular
velocity of both rotors and the total velocity.


