Here are some examples of various equations and equation environments in IATEX. Look them over and see how they work.

Here are some basic examples:

$$
\begin{equation*}
a_{0}=\frac{F}{m}=\frac{P_{0} A}{m} \tag{1}
\end{equation*}
$$

Note the difference between equation and equation*:

$$
P_{0} A t=m\left(1+\frac{\rho x A}{m}\right) v
$$

Equation array (eqnarray) lets you align equations. Here are some examples of eqnarray, numbered and unnumbered.

$$
\begin{align*}
& P_{0}(x)=1 \\
& P_{1}(x)=x \\
& P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right) \\
& P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right) \\
& P_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right) \\
& \vdots \\
& P_{l}(x)=\frac{1}{2^{l} l!}\left(\frac{d}{d x}\right)^{l}\left(x^{2}-1\right)^{l} \\
& V=\frac{2 \pi R^{3}}{3} \int_{0}^{\pi}[1+\delta]^{3} P_{0}^{3} \sin \theta d \theta \tag{2}\\
& \approx \frac{2 \pi R^{3}}{3}[1+3 \delta] \int_{0}^{\pi} P_{0} P_{0} \sin \theta d \theta \tag{3}\\
&=\frac{4 \pi R^{3}}{3}[1+3 \delta] \tag{4}
\end{align*}
$$

$\backslash[$ and $\backslash]$ are shortcuts for \begin\{equation*\} and \end\{equation*\}. }

$$
x(t)=\lambda\left[\sqrt{1+\frac{a_{0} t^{2}}{\lambda}}-1\right]
$$

\$\$ does the same thing,

$$
v(t)=v_{\max }\left(1+\frac{\lambda}{a_{0} t^{2}}\right)^{-1 / 2}
$$

but $\$$ creates an inline equation such as $v=\frac{\partial x}{\partial t}$.

