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The sonic passing bands and stopping gaps of a quasi-one-dimensional air tube with modulated
mass density were studied experimentally and theoretically. Some gap modes whose wave functions
are strongly localized near the ends of the air tube were also found. The simple experiment can be
used as a demonstration of band structure in an upper-division physics course. © 2002 American
Association of Physics Teachers.
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The Bloch theory indicates that the eigenfunctions of an
electron in a periodic potential are extended and the corre-
sponding eigenvalues form allowed energy bands and forbid-
den gaps. Recently, there has been much excitement in the
physics community concerning the extension of the idea to
electromagnetic and acoustic waves.1 A photonic band mate-
rial with periodically varying dielectric constant has been
found,2 and the vibrational properties of a finite one-
dimensional string-mass chain has also been studied.3 The
vibrational passing bands and gaps were found experimen-
tally and theoretically for a periodically loaded string. A ran-
domly loaded string was also investigated. Some frequency
bands and Anderson localized gap modes due to disorder
were found. An interesting analogy between electron band
structure and sonic band structure in fluids with periodic den-
sity variations was discussed theoretically by Dowling4 using
an infinite periodic model. A chain of delta functions was
used to describe the mass density variation and Kronig–
Penney-type solutions, similar to the Dirac comb problem in
quantum mechanics, were obtained. A more comprehensive
theoretical and experimental investigation on a similar one-
dimensional system was carried out by Bradley.5 Experimen-
tally, an air-filled rectangle aluminum duct that was loaded
with a periodic array of rectangle side branches was used to
find the frequency band structure.
We discuss a finite quasi-one-dimensional system with ar-

bitrary density modulation. This system allows us to extend
the study of the eigenproperties to the inclusion of disorder
in an acoustic system. Because the model is finite, it is pos-
sible to make direct comparisons with experiment. Also, be-
cause of the presence of the boundaries, the finite size effects
on the band structure can be investigated.
In the experiment, a PVC tube with a wall thickness of

1.25 cm, length of 285.3 cm, and interior diameter of 14.3
cm was evenly divided by 16 baffles of 1.25 cm thickness.
The baffles were made of particle board in the shape of a
half-circle. The half-circle shape, instead of baffles with a
central hole, was chosen because of a potentially interesting
sound behavior due to the arrangement of baffles at an angle
relative to one another. This arrangement of the baffles also
makes the current system different from a ‘‘beads on a
string’’ system.3 The length of the acoustic chamber created
by the baffles is 15.6 cm with a tolerance of 0.1 cm. The
system is excited by a 5-in., 40-W loudspeaker fixed at one
end of the tube. The speaker is controlled by a Tektronix FG

540 function generator amplified by an Altec 1040 B Solid
State Amplifier. The function generator can deliver either
short pulses or harmonic oscillations. Both normal mode
analysis and pulse analysis were used. In the normal mode
analysis, the transmitted sound intensity through the tube is
recorded by a B&K 2209 sound meter while the harmonic
frequency of the exciting source is being swept. In the pulse
analysis, a pulse is delivered to the tube and the subsequent
signal !a time series" is acquired with a Tektronix TDS 320
digital capture oscilloscope. The signal is then Fourier trans-
formed and analyzed in the frequency domain using MATH-
CAD. The spectra obtained from both methods were com-
pared with our theoretical predictions. In the experiment it
was found that the results of the normal mode and pulse
analysis were remarkably close, so in this paper only the
normal mode results will be presented.
We use Dowling’s simple theoretical model,4 except that

ours is finite. A d-function mass density is used to represent
the baffles. This is a good approximation because the thick-
ness of the baffles is much smaller than the length of the
tube. In the model a velocity field is used to describe the
pressure and velocity changes in a fluid system.6,7 The one-
dimensional velocity potential %(x) satisfies the differential
equation

d2%!x "

dx2 !&2'(!x "%!x ""0, !1"

where

(!x ""(0!)*
i"1

N

+!x#xi". !2"

In Eq. !2", (0 is the linear mass density of the air, ) mea-
sures the mass density of the baffles, xi indicates the loca-
tions of the baffles, N is the total number of baffles, and ' is
the compressibility of the air. The velocity change along the
x-direction is the negative gradient of the field %(x) and is
given by

v!x ""#
d%!x "

dx . !3"

For the present system, the two ends of the tube are rigid and
stationary, and the field %(x) must match the boundary
condition6
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d%!x "

dx "0. !4"

This boundary condition leads us to the following expansion
of %(x):

%!x "" *
m"1

, !2
L cos!m-x

L " cm , !5"

where L is the total length of the tube. The boundary condi-
tion is satisfied automatically with the cosine wave expan-
sion. In the numerical work, the upper limit of the expansion
in Eq. !5" is Nmax , which is determined by the desired accu-
racy of the solution. It was found that 100 cosine waves
(Nmax"100) lead to very high accuracy.3
If we substitute the expansion !5" into Eq. !1", we obtain

the matrix equation

*
m"1

Nmax ##!m-

L " 2+m ,n!(mn&
2$cm"0, !6"

where

(mn"'%
0

L
(!x "cos!m-x

L " cos! n-x
L " . !7"

The 100$100 matrix is diagonalized using the IMSL/Math/
Library software package which yields eigenvalues and
eigenfunctions as output.
For an empty air tube, the matrix equation results in a set

of evenly spaced eigenvalues as expected. This trend in the
frequency spectrum persists up to a critical frequency above
which the cross waves, the waves along the radial direction,
begin to set in. The radius of the cross section of the cylin-
drical tube is 7.2 cm, and the lowest cross-mode frequency is
about 3000 Hz.8
To check our experimental methods, the tube was first

excited without any baffles. The normal mode spectrum
showed evenly spaced peaks and became complicated be-
yond 3000 Hz due to the mixing of the axial and cross
modes. The peak separation is 60 Hz, which is in very good
agreement with the theory. Figure 1 displays the results for
the tube with 16 evenly spaced baffles. Because of the higher
mass density of the baffles, we expect that all the evenly
spaced resonant frequencies of the empty tube are suppressed
except those modes whose nodes are located at the positions
of the baffles. The lowest such mode is at about 1000 Hz,
which corresponds to the 18th mode of the empty tube. Be-
cause of the suppression of the lowest 17 eigenfrequencies, a
gap develops in which acoustic wave propagation is inhib-

ited. In the spectra shown in Fig. 1, frequency gaps can be
easily seen. The lowest passing band consists of 15 distinc-
tive peaks. Two more such passing bands can also clearly be
seen at higher frequencies. Our observations are similar to
the electronic energy bands in solid state physics. However,
there is a distinct difference between acoustic frequency
bands and electronic energy bands: that is, the acoustic fre-
quency bandwidth becomes narrower at higher frequencies
and the opposite behavior is exhibited by the electronic en-
ergy bands. Because of the narrowing in bandwidth at higher
frequencies, the 15 peaks in the higher bands are not distin-
guishable.
Figure 2 displays the calculated frequency versus the or-

dinal number of the eigenmodes of the baffled tube by solv-
ing the wave equation, Eq. !6". Three passing bands and
stopping gaps are shown. The wave functions corresponding
to the 15 eigenmodes in the passing bands are extended over
the entire tube as expected. The frequencies are in good
agreement with the observed data shown in Fig. 1. An inter-
esting feature of Fig. 2 is the gap modes near 600, 1560, and
2500 Hz. From the calculation, the wave functions of the
three modes are localized near the ends of the tube and they
are nearly twofold degenerate. The characteristics of the lo-
calized modes are very similar to that of defect modes in a
perfect lattice. We believe that the localized gap modes origi-
nate from the finite size of the tube: the ending points of the
finite tube serve as ‘‘defects’’ in an otherwise perfectly peri-
odic system.9 Experimentally, two gap modes are shown by
well-defined peaks near 1550 and 2200 Hz in the spectrum.
However, the gap modes near 600 Hz are missing from the
experimental spectrum, because they are too close to the up-
per edge of the lowest passing band.
In conclusion, an effective experimental method for study-

ing the acoustic properties of a mass-density-modulated sys-
tem was developed. In the system with periodic mass varia-
tion, some well-defined passing frequency bands separated
by forbidden gaps were found. Also a number of interesting
localized gap modes were investigated, which are reminis-
cent of defect modes in solid state physics.
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Fig. 1. The spectrum obtained by the normal mode analysis.

Fig. 2. Calculated eigenfrequencies for the tube with 16 evenly spaced
baffles.
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NATURE IS ALWAYS SMARTER

Perhaps the reason why science works, in the absence of a fixed method or a fixed set of rules,
is that it is based on an ethic which recognizes that while any individual is obligated to champion
what they honestly believe, no individual is the arbitrator of the correctness, or even the interest or
usefulness of their own ideas. Experience teaches us that no matter how sure of ourselves we may
feel, and how clever we may think we are being at certain instants, nature is always smarter, and
anyone’s individual achievement may only survive to the extent to which it is superseded by the
achievements of others.

Lee Smolin, The Life of the Cosmos !Oxford University Press, New York, NY, 1997", p. 297.
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