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This article describes a unit on oscillations, determinism and chaos developed for calculus-based

introductory physics students as part of the laboratory-centered Workshop Physics curriculum.

Students begin by observing the motion of a simple pendulum with a paper clip bob with and

without magnets in its vicinity. This observation provides an introduction to the contrasting concepts

of Laplacian determinism and chaos. The rest of the unit involves a step-by-step study of a

pendulum system that becomes increasingly complex until it is driven into chaotic motion. The time

series graphs and phase plots of various configurations of the pendulum are created using a

computer data acquisition system with a rotary motion sensor. These experimental results are

compared to iterative spreadsheet models developed by students based on the nature of the torques

the system experiences. The suitability of the unit for introductory physics students in traditional

laboratory settings is discussed. © 2004 American Association of Physics Teachers.
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I. INTRODUCTION

Many contemporary fields of physics require a knowledge
of quantum mechanics or relativity. For this reason most
calculus-based introductory physics courses rarely give stu-
dents any real insight into emerging fields of research. The
fact that the field of nonlinear dynamics is almost entirely
classical in nature provides us with an opportunity to give
students first-hand experience with an active field of contem-
porary physics research. For this reason, we have developed
a unit on Oscillations, Determinism and Chaos1 as a culmi-
nating experience for calculus-based introductory physics
students as they complete the mechanics portion of the
Workshop Physics curriculum.2,3

A. The Workshop Physics Project

The Workshop Physics Project began in the fall of 1986
with a grant from the Fund for Improvement of Postsecond-
ary Education !FIPSE". As a result of continued support from
both FIPSE and the National Science Foundation, curricular
materials have been produced including an Activity Guide,4

computer hardware and software, and apparatus to help in-
structors teach introductory physics without lectures. The
major objective of Workshop Physics courses is to help stu-
dents understand the basis of knowledge in physics as a
subtle interplay between observations, experiments, defini-
tions, mathematical descriptions, and the construction of
theories. To this end, students use the Activity Guide to make
predictions and observations, do guided derivations, and
learn to use flexible computer tools to develop mathematical
models of phenomena.
Instead of spending time in lectures and separate labora-

tory sessions, students in calculus-based Workshop Physics
courses center their work on the Activity Guide. The four
modules of the Guide contain 28 units covering topics in
mechanics, thermodynamics, electricity and magnetism, and
nuclear physics. At Dickinson College students spend 6
hours a week in a laboratory environment, and are able to
complete 27 of these units in two semesters—approximately
1 unit each week. Although Workshop Physics students
spend an equivalent amount of time solving problems and

doing equation verification experiments as those who study
under the lecture method, they have considerably more ex-
perience making observations, collecting data, and using
computer tools.

B. The role of the Oscillations, Determinism and Chaos
unit

The unit on Oscillations, Determinism and Chaos5 com-
pletes a series of 15 mechanics units that cover kinematics,
Newton’s laws, momentum, mechanical energy, rotational
motion, and simple harmonic motion. Most of the laboratory
work in the final unit on chaos involves recording and ana-
lyzing the motion of a physical pendulum that is made in-
creasingly complex until it becomes chaotic.
In previous units, students gain considerable experience

with mathematical modeling by using the dynamic graphing
capability of Excel® to fit their data to analytic functions
!linear, quadratic, inverse, and sinusoidal". The chaos unit
introduces students to the use of the spreadsheet to model
more complex systems using the Euler method for numerical
integration. Students also use !but do not develop" a
spreadsheet-based second-order Runge–Kutta method to ex-
plore other possible behaviors of their chaotic pendulum sys-
tem and to test the sensitivity of the system to initial condi-
tions.
Because an overarching goal of the chaos unit is to ex-

plore the viability of Laplacian determinism, the unit serves
both a philosophical and theoretical capstone to the study of
Newtonian mechanics.

II. THE CHAOTIC PHYSICAL PENDULUM SYSTEM

A. The experimental apparatus

The apparatus that students spend most of their time using
is a physical pendulum consisting of an aluminum disk
mounted on the low friction shaft of a rotary motion sensor.
This sensor is a digital encoder that transmits up to 1440
logic pulses per revolution to a digital interface. When a
small mass is bolted to the edge of the disk and displaced
from vertical equilibrium, the system becomes a physical
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pendulum #Fig. 1!a"$. Adjustable eddy damping is added by
means of a small magnet attached to a threaded bolt #Fig.
1!b"$.
Students can modify the pendulum so that a string,

springs, and a driver motor are coupled to it via a small drive
wheel attached to the pendulum disk !Fig. 2". For certain
combinations of the springs, disk mass, edge mass, eddy
damping, and driver motor frequency, the pendulum be-
comes chaotic.

B. Commercially available chaotic pendula

In 1989 Priscilla Laws, Desmond Penny, and Brock Miller
began developing the chaotic physical pendulum system at
Dickinson College. We used a rotary encoder developed by
Robert Teese and Ronald Thornton and a data acquisition
system distributed by Vernier Software and Technology.6

After several years of testing in Workshop Physics
courses, personnel at PASCO improved and adapted compo-
nents of the Dickinson College apparatus for use with their
own driver motor and data acquisition system. These com-
ponents are available for the study of large angle oscillations,
magnetic damping, driven harmonic motion, and chaotic
motion.7,8 The PASCO pendulum apparatus, when used with
a relatively low cost data acquisition system !distributed by
either PASCO or Vernier Software and Technology", is suit-
able for use with our chaos unit.
There are at least two other chaotic dynamical systems

that can be purchased, including the Klinger Torsion
Pendulum9 and the Daedalon Chaotic pendulum.8,10 How-
ever, the use of either of these systems in an introductory
physics laboratory would require a significant modification
of our curricular materials.

III. THE INTRODUCTORY CHAOS UNIT

The unit is designed to fit within the 2-hour sessions that
are typically used in Workshop Physics courses. Although it
requires about 8 hours of student time to complete, the first 2
hours of activities do not require access to a laboratory and
can be done independently.
Session One: An Introduction to Chaos. Students are asked

to read several pages of introductory material in which the
concept of a dynamical system is introduced. The following
quote by Pierre LaPlace is presented. ‘‘If an intellect were to
know ... all the forces that animate nature and the conditions
of all the objects that compose her, and were capable of
subjecting these data to analysis, then this intellect would
encompass in a single formula the motions of the largest
bodies in the universe as well as those of the smallest atom;
and the future as well as the past would be present before its
eyes.’’11

Because students have just completed a study of simple
dynamical systems for which the forces between objects in
the system are well understood, their first activity is to write
a short essay about the viability of using Newton’s laws to
predict the state of the universe assuming that the forces of
interaction between all the objects in the universe are known.
Next students are asked to imagine whether or not the

motion of the falling leaf in a closed box acting in the pres-
ence of known forces would be predictable in light of the
following quote by Henri Poincaré: ‘‘It may happen that
small differences in the initial conditions produce very great
ones in the final phenomena. A small error in the former will
produce an enormous error in the latter. Prediction becomes
impossible... .’’12

The 1-hour videotape produced by NOVA in 1989 entitled
‘‘The Strange New Science of Chaos’’ shows many examples
of chaotic systems in different fields of study and provides an
overview of the emerging techniques for studying chaotic
systems.13 Students view this video and answer some basic
question about it.
The session ends with students observing the sensitivity of

the subsequent motions of a paper clip pendulum with and
without magnets present !Fig. 3".
Session Two: Large and Small Angle Pendulum Oscilla-

tions. In this session and the two that follow, students build

Fig. 1. The basic physical pendulum with adjustable eddy damping.

Fig. 2. A string attached to springs and a driver motor is wrapped around a

drive wheel consisting of a smaller plastic disk attached to the physical

pendulum disk.

Fig. 3. This paper clip pendulum bob is reasonably insensitive to initial

conditions if no magnets are present.
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and explore the deterministic and chaotic behavior of the
physical pendulum system shown in Figs. 1 and 2. They also
keep track of the forces acting on the system and use these
forces to develop either analytical or iterative models.
The session begins with a series of qualitative predictions

and observations of the motion of the disk mounted on a low
friction bearing first without and then with various edge
masses. Then students collect data using the rotary motion
sensor and a computer data acquisition system. They also
create time series plots of the angular displacement of the
pendulum as well as phase plots of rotational velocity as a
function of the angular displacement. When students release
an edge mass from an angle of about 135°, the resulting
oscillations take about two full minutes to die out as shown
in Fig. 4.
Students predict how the motions of two different runs of

data will compare if they carefully start the pendulum in
exactly the same way. They are not surprised to find that with
some practice graphs of two identical runs match each other
almost perfectly. At this point, students also are introduced to
reconfiguring the data acquisition software to produce phase
plots !rotational velocity versus angular position" of their
matched data sets. The data acquisition software uses a
smoothed first derivative of the angle versus time data to
create the rotational velocity versus time data. The phase plot
for one data set is shown in Fig. 5.
Session Two ends with a series of activities designed to

help students compare the characteristics of large and small

angle motions of their physical pendulum. At first, students
are asked to predict how the period of the physical pendulum
and the shape of a single cycle of position versus time might
differ at small and large amplitudes. To save time, portions of
the data graphed in Fig. 4 are re-plotted by an instructor to
enable students to compare the periods and describe how the
shape of the time series graph for a single pendulum oscilla-
tion at large amplitude differs from the graph of a small
amplitude oscillation !see Fig. 6". Students often are sur-
prised that the period is longer at large amplitudes than at
small amplitudes and that the large amplitude angle versus
time shape is not sinusoidal. Students note that the peaks are
broader at the large angular displacements than the sinu-
soidal plot of the angular displacement at small angular dis-
placements.
Session Three: Using Iterations to Model the Motion. This

session begins by preparing students to model their own
large angle physical pendulum data, which are similar to the
data shown in Fig. 3. Toward the end of the session, students
add eddy damping to their pendulum system and then collect
additional data. At the end of the session they are able to
model their new data for the damped system by modifying
the force term in their spreadsheet model !described below"
to take the velocity dependent eddy damping force into ac-
count. For various reasons this session turns out to be the
toughest one in the entire unit.
Students are first asked to review the derivation of the

differential equation that describes small angle simple pen-
dulum motion. As an extension to their derivation in the

Fig. 4. The physical pendulum is displaced by an angle of 135° and re-

leased. The oscillations take just under 2 minutes to die out.

Fig. 5. A phase plot for the physical pendulum for about 25 s of oscillations.

Note that the plot is nonelliptical at first and then becomes more elliptical at

smaller angles.

Fig. 6. A large angle cycle of period 1.8 s from the Fig. 4 data !top graph"
compared to small angle oscillations that occur in the same time !bottom
graph". The small angle oscillation is sinusoidal and has a shorter period.
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previous unit on harmonic motion, we give students some
hints that enable them to determine the differential equation
that describes the motion of the physical pendulum oscillat-
ing with a large amplitude. They find that

%! t "!
&net

I
!

&grav

I
!"!mgR sin!'! t ""

I
" , !1"

where

I!mR2# 1
2MR2 !2"

is the rotational inertia of a disk of mass M and radius R that
has an edge mass of mass m located a distance R from the
center of the disk.
Because the differential equation for large angle motion

cannot be easily solved analytically, we introduce students to
a modified Euler method14—an iterative numerical integra-
tion scheme for using the equation of motion to predict the
rotational acceleration, velocity, and position of the pendu-
lum as a function of time.15

Our modified Euler method involves a step through time
that starts with the initial values for the pendulum’s angular
displacement and rotational velocity. This iterative method
involves the use of Eq. !1" and two additional equations de-
rived from the definitions of rotational acceleration and ve-
locity. The first additional equation is based on the definition

of rotational acceleration (%(t)(d)/dt*+)/+t) and is
given by

)! t#+t "*)! t "#%! t "+t . !3"

The second equation is based on the definition of rotational

velocity ()(t)(d'/dt*+'/+t) and is given by

'! t#+t "*'! t "#)! t#+t "+t . !4"

Equations !3" and !4" are good approximations to the original
differential equations for small enough +t .

To perform the iterative calculations, students begin by

substituting the initial value of the angular position '!0" into
Eq. !1" to determine the initial rotational acceleration %!0".
Next a small time interval +t !such as 1/20th of a second" is
chosen and used in Eq. !3" along with the calculated value of
%!0" and the initial value of rotational velocity )!0" to find a
new value of the rotational velocity )(0#+t) at a time +t
later. Then the new value )(0#+t) is used in Eq. !4" to find
a new value of the angular displacement '(0#+t) at time
+t . This process is repeated many times to find updated
values of the rotational acceleration, rotational velocity, and

angular displacement. Once the spreadsheet is set up prop-

erly, the computer does all the iterative calculations and

graphing.

To minimize the errors associated with the Euler method,

we ask students to model their angle versus time data at a

time when the pendulum’s angular displacement is a maxi-

mum so that the initial rotational velocity is close to zero.

Before starting the modeling, students are advised that they

must transform their angular displacement data from degrees

to radians.

Students use a spreadsheet template that we provide them

!along with much instructor and teaching assistant advice" to
create a model to their data like the one shown in Fig. 7.16

Adding magnetic damping forces to the physical pendulum

system: In the next part of the session, students position a

damping magnet very close to the face of the aluminum disk

to create significant eddy damping and a real time graph of

angular position versus time for an initial angular position of

about 135°. Then students were shown how to add the term

&damp!"b) to Eq. !1" !the torque equation used in the it-
erative calculations". Adding this term and copying it down

through the column in which it appears gives students instant

Fig. 7. A spreadsheet showing an overlay graph of data points and a curve representing the theoretical relation between angular position and time for one cycle

of a physical pendulum oscillating with an amplitude of about 135°.
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results for their new model. By using the damping coefficient
b as an adjustable parameter, students can obtain an excellent
fit to their data like that shown in Fig. 8.
Session Four: The Chaotic Physical Pendulum. In this fi-

nal session students modify their pendulum so that a string,
springs, and a driver motor are coupled to the disk and edge
mass as depicted in Fig. 2.
Exploring the natural frequencies of the system: Students

are asked to observe the natural oscillation frequencies of the
apparatus when it is configured in different ways. These ob-
servations help them understand why the system motion be-
comes chaotic when it is driven at certain frequencies. Stu-
dents start by observing and determining the frequency of
oscillation of the disk without the edge mass added as it
moves under the influence of torques caused by springs
wrapped around the drive wheel !Fig. 2". Next they configure
the system as a pendulum by adding a small edge mass to it
and measure the natural frequency of the pendulum without
the springs. Then students re-attach the springs to the driver
wheel of the pendulum and re-balance the system so the
springs are stretched equally when the mass is perched
straight up on the top of the disk at its unstable equilibrium
point !Fig. 9".
Next, students measure the left and right equilibrium

angles 'L and 'R with respect to a vertical axis as shown in
Fig. 2. If the springs are properly balanced, the magnitudes
of these two angles are essentially the same. Finally students
measure the natural frequency of oscillation of the spring–
pendulum system when the edge mass has fallen to the right
of its highest possible position and again when it has fallen
to the left.
Driving the system at natural frequencies: Students are

asked to set the drive frequency of their electric motor to one
of the natural frequencies they have measured, balance the
springs so the edge mass points straight up, turn on the mo-
tor, and collect data for the angular displacement versus time.
Students find that whenever the motor is near a natural fre-
quency, the system settles rather quickly into a stable oscil-
lation mode.
Driving the system chaotic: In the next activity students

set the drive frequencies so that they are different from any
of the natural frequencies and see if they can achieve a situ-
ation in which there is an irregular pattern in the time series
graph depicting the angular position versus time. A typical
pattern is shown in Fig. 4 for the time series graph and the
phase plot of the chaotic physical pendulum system.
Students find that their systems are so sensitive to the

initial values of the angular position and rotational velocity
that it is impossible for them to recreate the initial conditions
accurately enough to repeat a pattern on either a time series
graph or a phase plot for more than a few seconds. A typical
example of this sensitivity is shown in Fig. 10.
Using an iterative model of the chaotic pendulum motions:

Students are led through a guided derivation of the four
torques that act on the disk of the pendulum, including the
gravitational torque on the edge mass, the eddy damping
torque exerted on the aluminum disk by the magnet, the
spring torques, and the torque exerted by the driver. We write
the net torque as

&net!&grav#&damping#&spring#&driver. !5"

The rotational acceleration is given by the net torque divided
by the rotational inertia of the physical pendulum, or

%!
&net

I
, !6"

where the rotational inertia of the pendulum is given by Eq.
!2". The notation used for the quantities needed in the model
are summarized in Table I. It can be shown that the torques
are given by

Fig. 8. An overlay graph of data points and a curve representing the theo-

retical relationship between angular position and time for the physical pen-

dulum oscillating in the presence of eddy damping. Data are shown by open

circles, the line represents the modified Euler model of the data.

Fig. 9. !a" Rotary motion sensor data for the angular displacement of a
chaotic physical pendulum vs time is shown in the top graph; !b" phase plot
depicting rotational velocity vs angular position for the first 30 s of motion

of the same pendulum.

Fig. 10. An overlay time series graph of the first few seconds of two dif-

ferent runs of chaotic physical pendulum. Both sets of data are recorded for

similar initial conditions. Note that the two motions begin to diverge from

each other within seconds.
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&grav!mRg sin ' , !7"

&damping!"b) , !8"

&spring!"2kr2' , !9"

&driver!#krAd cos#!2,/Td"t#-$ . !10"

In principle, students can now develop an iterative spread-
sheet model to describe the motion of the chaotic pendulum
system. However, developing this model requires many
hours of careful work which is not very instructive. In addi-
tion, the pendulum often obtains high rotational velocities as
it whips back and forth. This motion means that the Euler
method students had used for numerical integration will ac-
cumulate integration errors unless the time steps are ex-
tremely small. For this reason the author used the second-
order Runge–Kutta integration.17

Students use the Runge–Kutta spreadsheet16 to explore the
theoretical behavior of their pendulum. In particular, they are
asked to run the model and devise a method for describing
the sensitivity of its output to small changes in the initial
conditions !that is, the angular displacement and the rota-
tional velocity at time t!0). A sample screen shot of the

output is shown in Fig. 11. Students observe that the time
series graphs and phase plots are similar to those that they
found. They also find that the motion of the theoretical sys-
tem also is very sensitive to the initial values of angle and
rotational velocity.
Revisiting of the concept of determinism. After finishing

their work with their simulations of chaotic motion, the stu-
dents are asked to read and consider the meaning of a short
statement that summarizes the conditions for chaotic motion:
!a" It takes three or more independent dynamical variables to
describe the state of the system at any given time, and !b" the
equation describing the net force or torque on the system
must have nonlinear term that couples several of the
variables.18 These two statements do not require students to
revise their concept of determinism.

Finally, students are asked again to comment briefly on the
viability of Laplacian determinism. In general, the student
comments on determinism both before and after they work
on the unit are disappointing. We expected students to be
surprised that the state of a chaotic system is unpredictable
even if the torques acting on it are known. We hoped that
they could speculate about what would happen in a nonquan-
tum world if they could measure the initial state of the sys-
tem to infinite precision. Instead, students often commented
that Laplacian determinism is not feasible because of quan-
tum effects.
The question posed at the beginning and and revisited at

the end of the unit needs to be worded more carefully. For
example, students might be asked initially: Suppose that you
could know the mass, shape, position and velocity of every
object in the universe to eight significant figures, how the
forces and torques between them depend on these four quan-
tities, and that the universe is governed only by Newton’s
laws of motion. How well could you predict the future?’’ The
final question might be changed to the following: Based on
what you have learned by using Newton’s laws of motion
and the known torques to model and predict the motion of
your chaotic pendulum, what changes, if any, would you
make to your answer to the first question?19

IV. CONCLUSIONS

Many of the topics that students need to understand and to
explore the behavior of the pendulum are covered in previ-
ous units. The required measurements are similar to those
used in many Workshop Physics activities on mechanics.

Table I. Summary of notation.

Symbol Name

Typical

value

m Edge mass 0.010 kg

R Disk radius 0.050 m

M Disk mass 0.143 kg

g Gravitational constant 9.8 m/s2

' Angular displacement of

the edge mass from

upward vertical with

positive left

displacement

Variable

!rad"

) Rotational velocity of

the edge mass

Variable

!rad/s"
b Magnetic damping

coefficient

6.0$10"5

!!ms"/rad"
r Axle radius 0.025 !m"
Ad Driver amplitude 0.032 !m"
Td Driver period 1.56 !s"
t Current time Variable

!s"
- Phase of the driver

!assumed to be zero in
the model"

0.0 !rad"

Fig. 11. Samples of !a" time series and !b" phase plot graphs generated by a
second-order Runge–Kutta solution of the possible motion of a chaotic

physical pendulum. The constants are similar to those used to obtain the Fig.

10 data.
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Certain aspects of the sample activities used from the Chaos
Unit are typical of Workshop Physics sessions in that they
demonstrate the interplay between predictions, observations,
experiments, and analysis, using both computer data acqui-
sition software and spreadsheet tools.
In spite of the overlap in the approach taken in the Chaos

Unit with others that preceded it, the relative complexity of
the pendulum system and the introduction of the iterative
spreadsheet modeling are still a stretch for most students.
Nevertheless, we found that the Chaos Unit is both vexing
and exciting to our students. Overall, we believe that our
attempt to expose introductory physics students to profound
aspects of contemporary physics is well worth the effort.
Adapting this unit to the laboratory portion of more tradi-

tional physics courses would require some modification. But
the physics concepts that students need to understand the
behavior on the chaotic pendulum are covered in the lecture
portion of many calculus-based introductory physics courses.
Students would need to have prior experience in earlier labo-
ratory sessions with computer data acquisition software and
be exposed to the process of fitting their data to analytical
functions using spreadsheets or other software tools. In this
case, this unit could be adapted for use in the last three or
four laboratory periods at the end of a mechanics laboratory
sequence.
In this introductory treatment of chaotic dynamics, we do

not attempt to find the Lyapunov exponents needed to verify
that the pendulum motions are truly chaotic. In addition, we
do not introduce students to the concept of the Poincaré sec-
tion. However, if a more sophisticated data acquisition sys-
tem is used, these topics can be introduced in an advanced
laboratory course. For example, Robert DeSerio has devel-
oped and improved the PASCO Chaotic Physical Pendulum
and has reported on the results of a rigorous experimental
investigation of his system including three-dimensional
phase space data, the acquisition of Poincaré sections for
almost all drive phases, and the calculation of Lyapunov ex-
ponents for several chaotic system configurations.20
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