
Waves in locally periodic media
David J. Griffiths and Carl A. Steinkea)
Physics Department, Reed College, Portland, Oregon 97202

!Received 18 January 2000; accepted 7 June 2000"

We review the theory of wave propagation in one dimension through a medium consisting of N
identical ‘‘cells.’’ Surprisingly, exact closed-form results can be obtained for arbitrary N. Examples
include the vibration of weighted strings, the acoustics of corrugated tubes, the optics of photonic
crystals, and, of course, electron wave functions in the quantum theory of solids. As N increases, the
band structure characteristic of waves in infinite periodic media emerges. © 2001 American Association
of Physics Teachers.
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I. INTRODUCTION

In elementary physics one encounters two kinds of wave
motion: traveling waves, which can have any frequency, and
standing waves, which occur only for discrete ‘‘allowed’’
frequencies. The same dichotomy persists all the way
through quantum mechanics, in the form of scattering states
and bound states, respectively. But there exists a third kind
of wave motion, that occurs in !infinite" periodic media, for
which the frequencies fall into continuous ‘‘bands,’’ sepa-
rated by forbidden ‘‘gaps.’’ In the quantum context this was
first noted by Kronig and Penney in the classic paper that
laid the foundation for the modern theory of solids.1
Band structure is practically the signature of solid state

physics, but the same phenomenon occurs, in principle, for
mechanical, acoustical, electromagnetic, and even oceano-
graphic waves—it’s just that whereas an ordinary macro-
scopic crystal, with !say" 107 atomic layers, is to all intents
and purposes truly periodic !continuing forever", a weighted
string or a corrugated pipe or a sequence of sandbars is likely
to have only a relatively small number N of repeating ele-
ments. !We shall call such a system ‘‘locally periodic.’’" In
practice, therefore, they exhibit only suggestive precursors
of the band structure characteristic of the fully periodic sys-
tem.
From a theoretical standpoint locally periodic systems are

more difficult to analyze because Bloch’s theorem,2 which so
dramatically simplifies the periodic problem, does not apply.
It is in fact quite astonishing to learn that the finitely periodic
case can be solved analytically for arbitrary N. This was first
discovered in the optical case by Abelès in 1950;3 it was
rediscovered in the quantum context by Cvetič and Pičman
in 19814 !and later by several others", but to our knowledge
it has not been noticed for other physical systems.
Our purpose here is to provide a unified and accessible

treatment of the theory of waves in locally periodic media
and to survey its applications in various branches of physics.
!It is surprising how little ‘‘cross-talk’’ there has been be-
tween different specialized literature streams, and the result
has been a lot of duplicated effort." From a pedagogical point
of view the most interesting dividend is the possibility of
exploring the emergence of band structure as the number of
‘‘cells’’ !N" increases.
Throughout this paper we restrict our attention to nondis-

sipative waves propagating in one dimension. In Sec. II we
develop the general theory, using nonrelativistic quantum
scattering as a model. In Sec. III the method is adapted to
several mechanical systems: transverse waves on weighted

strings, longitudinal waves on weighted rods, acoustic waves
in corrugated tubes, and water waves crossing a sequence of
sandbars. In Sec. IV we consider electromagnetic waves in
transmission lines and photonic crystals. In Sec. V we treat
the case of relativistic quantum scattering using the one-
dimensional Dirac equation. Section VI concludes with gen-
eral remarks and observations.

II. GENERAL THEORY: QUANTUM MECHANICS

Perhaps the simplest context is quantum mechanical scat-
tering in one dimension, governed by the Schrödinger equa-
tion:
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Separation of variables,
'!x ,t "#(!x "e!iEt/%, !2"

reduces this to the time-independent Schrödinger equation,
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A. The transfer matrix

Consider first a localized potential V , restricted to the in-
terval !a, b"; the general solution is

(!x "#! Aeikx"Be!ikx if x$a
(ab!x " if a$x$b
Ceikx"De!ikx if b$x ,

!4"

where k)!2mE/% . When the time factor #Eq. !2"$ is in-
cluded, A exp(ikx) and C exp(ikx) represent waves propagat-
ing to the right, while B exp(!ikx) and D exp(!ikx) repre-
sent waves propagating to the left !Fig. 1".
To complete the problem, one solves Eq. !3" for ((x) in

!a, b". Then, invoking the appropriate boundary conditions at
a and b #typically, continuity of ((x) and its derivative$, one
obtains two linear relations among the coefficients A, B, C,
and D. These can be solved for any two amplitudes in terms
of the other two, and the result can be expressed as a matrix
equation. Usually one chooses to write the outgoing ampli-
tudes !B and C" in terms of the incoming amplitudes !A and
D" using the so-called ‘‘S matrix’’:

" BC ##S" AD # . !5"
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We find it more convenient to express the amplitudes to the
left of the barrier !A and B" in terms of those to the right !C
and D":

"AB ##M" CD # . !6"

This 2%2 matrix

M#"M 11 M 12

M 21 M 22
# !7"

is called the ‘‘transfer matrix.’’ 5
Time reversal invariance and conservation of probability

impose strong conditions on the structure ofM, regardless of
the specific form of the potential.6 Taking the complex con-
jugate of Eq. !1" and switching the sign of t yield
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which is of the same form as Eq. !1" !assuming, of course,
that V is real". Thus, if '(x ,t) is a solution, then '*(x ,
!t) #in our case (*(x)exp(!iEt/%)] is also a solution:

(*!x "#! A*e!ikx"B*eikx if x$a

(ab* !x " if a$x$b

C*e!ikx"D*eikx if b$x .
!9"

Notice that this interchanges incoming and outgoing waves;
in terms of the transfer matrix,

"B*A* ##"M 11 M 12

M 21 M 22
# "D*C* # . !10"

It follows that

"AB ##"M 22* M 21*

M 12* M 11*
# " CD # .

Comparing Eq. !6", we have

"M 11 M 12

M 21 M 22
# #"M 22* M 21*

M 12* M 11*
# .

Evidently,

M 11#M 22* , M 21#M 12* . !11"

Next we assess the implications of conservation of prob-
ability. In one dimension the probability current,7

j)
%

2mi " (* d(dx !
d(*
dx ( # ,

is independent of x. In particular,
j $x$a# j $x&b . !12"

Referring back to Eq. !4", this entails
$A$2!$B$2#$C$2!$D$2. !13"

In matrix notation,

!A B "" 1 0
0 !1 # "A*B* ##!C D "" 1 0

0 !1 # " C*D* # .
Using Eq. !6", we rewrite the left-hand side:

!C D "M̃" 1 0
0 !1 #M*" C*D* #

#!C D "" 1 0
0 !1 # " C*D* # ,

where M̃ is the transpose of M. Since this is true for all C
and D, it must be the case that

"M 11 M 21

M 12 M 22
# " 1 0
0 !1 # "M 11* M 12*

M 21* M 22*
# #" 1 0

0 !1 # .
!14"

This yields four constraints, but in view of Eq. !11" only one
of them is really new:

$M 11$2!$M 12$2#1, !15"
or, equivalently,

detM#1. !16"
Conclusion: From the time reversal invariance of the

Schrödinger equation, together with conservation of prob-
ability, it follows that all transfer matrices8 are of the form

M#" w z
z* w*# , !17"

where w and z satisfy
$w$2!$z$2#1. !18"

B. Multiple cells

Now let us suppose that the basic unit cell !Fig. 1" is
replicated N times at regular intervals !Fig. 2". Our problem
is to construct the transfer matrix for the whole array, given
the transfer matrix #Eq. !17"$ for a single cell.9 Without loss
of generality we assume that the unit cell is defined on the

Fig. 1. Scattering from an arbitrary potential. Fig. 2. A locally periodic potential.
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interval (!a ,a), and zero elsewhere. The cells are separated
by a distance s*2a . The wave function between the cells
can be written

(n!x "#Aneik!x!ns ""Bne!ik!x!ns "

for !n!1 "s"a$x$ns!a , !19"

where 0$n$N . By extension, (0(x)#A0exp(ikx)"B0exp
(!ikx) is the wave function to the left (x$!a), and
(N(x)#ANexp[ik(x!Ns)]"BNexp[!ik(x!Ns)] is the wave
function to the right [x&(N!1)s"a]. This notation effec-
tively puts each (n(x) in a ‘‘local coordinate system’’ whose
origin is the center of the next cell to the right. With the
wave function written in this manner the transfer matrix for
the entire array can be written as the Nth power of a
‘‘shifted’’ transfer matrix P, constructed fromM, as follows:
For the nth cell, we have #using Eqs. !6", !17", and !19"$

"An
Bn

##" w z
z* w*# "An"1e!iks

Bn"1eiks # , !20"

or

"An
Bn

##P"An"1
Bn"1

# , !21"

where

P)M" e!iks 0
0 eiks# #" we!iks zeiks

z*e!iks w*eiks# . !22"

Notice that P, like M, is unimodular (detP#1). Using Eq.
!21" recursively,

"A0B0 ##PN"AN
BN

# , !23"

and the whole problem reduces to the evaluation of PN.
There are several elegant ways to calculate the Nth power

of a unimodular 2%2 matrix.10 A particularly cute one ex-
ploits the Cayley–Hamilton theorem to establish a relation
between P2 and P. The characteristic equation for P is
det(P!Ip)#0, or

p2!p Tr!P""det!P"#0. !24"

Since detP#1, we can rewrite this as

p2!2+p"1#0,

where

+) 1
2Tr!P". !25"

The Cayley–Hamilton theorem says that any matrix satisfies
its own characteristic equation:11

P2!2P+"I#0. !26"

This means that any higher power of P can be reduced to a
linear combination of P and the identity matrix I:

PN#PUN!1!+"!IUN!2!+", !27"

where UN(+) is a polynomial of degree N in +. Multiplying
by P,

PN"1#P2UN!1!+"!PUN!2!+".

Using Eq. !26" to substitute for P2:

PN"1#!2P+!I"UN!1!+"!PUN!2!+".

Alternatively, putting N→N"1 in Eq. !27",

PN"1#PUN!+"!IUN!1!+".

Equating these two expressions for PN"1, we obtain

UN"2!+"!2+UN"1!+""UN!+"#0. !28"

This is the recursion relation for Chebychev polynomials. In
fact, putting N#2 into Eq. !27" and comparing Eq. !26", we
see that U0(+)#1 and U1(+)#2+ , so UN is the Nth Cheby-
chev polynomial of the second kind.12
Equation !27" is a closed-form expression for the Nth

power of any unimodular 2%2 matrix. In our particular case
P is given by Eq. !22", and

+# 1
2Tr!P"

# 1
2!we!iks"w*eiks"

#Re!w "cos!ks ""Im!w "sin!ks ". !29"

It follows that the transfer matrix for the whole array of N
cells is

MN#PN" eikNs 0
0 e!ikNs# #" #we!iksUN!1!+"!UN!2!+"$eikNs zUN!1!+"e!ik!N!1 "s

z*UN!1!+"eik!N!1 "s #w*eiksUN!1!+"!UN!2!+"$e!ikNs# . !30"

Conclusion: If we can determine the transfer matrix for a
single cell !i.e., if we know w and z", we can immediately
write down the transfer matrix for N cells. In particular, the
transmission probability !for incidence from the left" is

T#%CA%D#0

2

#
1

$M 11$2
, !31"

and hence #using Eq. !18"$13

TN#
1

1"# $z$UN!1!+"$
2 . !32"

Chebychev polynomials of the second kind can be written
in terms of sinusoidal functions:

UN!+"#
sin!N"1 ",
sin , , !33"

where

,)cos!1 + . !34"

In the present context, as we shall see, , represents the
‘‘Bloch phase’’ of the corresponding !fully" periodic
system.14 The transmission coefficient #Eq. !32"$ can be ex-

139 139Am. J. Phys., Vol. 69, No. 2, February 2001 D. J. Griffiths and C. A. Steinke



pressed in terms of the Bloch phase, avoiding explicit refer-
ence to the Chebychev polynomials:

TN#&1"$z$2" sinN,sin , # 2'!1

. !35"

C. Examples and applications

1. Delta functions

If the unit cell consists of a single delta function,
V!x "#c-!x ", !36"

then15

w#1"i. , z#i.
where

.)
mc
%2k . !37"

So Eq. !29" yields
+#cos!ks "". sin!ks ", !38"

and Eq. !32" says

TN#
1

1"#.UN!1!+"$
2 . !39"

2. Rectangular barriers
Next consider the rectangular barrier !Fig. 3", with con-

stant potential V0 on the interval !a$x$a . If E&V0 , the
wave function is:

(!x "#! Aeikx"Be!ikx if x$!a

Feik!x"Ge!ik!x if !a$x$a
Ceikx"De!ikx if x&a ,

!40"

where k!)!2m(E!V0)/% . Imposing continuity of ((x)
and its derivative at x#'a to eliminate F and G, we obtain
the transfer matrix

M#" !cos 2k!a!i/"sin 2k!a "e2ika i/! sin 2k!a
!i/! sin 2k!a (cos 2k!a"i/"sin 2k!a)e!2ika# , !41"

where

/')
1
2 " 0'

1
0 # , 0)

k
k!
. !42"

The transmission coefficient for a multicell array is given by
Eq. !32", with

z#i/! sin!2k!a ",
!43"+#cos!2k!a "cos!kl "!/" sin!2k!a "sin!kl ",

where l )s!2a is the distance between adjacent barriers.
#For the case E$V0 , we simply substitute k!→!i1 with
1)!2m(V0!E)/% .]
The delta function and the rectangular barrier have been

studied extensively.16 Perhaps the most striking result is the
surprisingly early emergence of band-like structure, which is
clearly visible with N as low as 5 !Fig. 4": In some energy
ranges the transmission is close to perfect, but in the inter-
vening gaps the wave is mostly reflected. The location of
these gaps, which are especially pronounced as N increases,
is predicted by the structure of +, the cosine of the Bloch
phase ,, as indicated in the last plot of Fig. 4.

3. Bound states

If the potential in the unit cell runs negative, there may be
discrete bound states !with E$0) in addition to the scatter-
ing states (E&0). In this case,

2)!ik#!2m$E$/% !44"
is real !and positive", and the wave function #Eq. !4"$ takes
the form

(!x "#! Ae!2x"Be2x if x$a
Ce!2x"De2x if x&b .

!45"

For a bound state we must have A#0 !otherwise ( blows up
as x→!3) and D#0 !else (→3 as x→3), with B and C
nonzero !so the wave function doesn’t evaporate entirely". It
follows #Eq. !6"$ that M 11#0. Thus bound states in the lo-
cally periodic system are signaled by the vanishing of wN ,

we!iksUN!1!+"!UN!2!+"#0, !46"
at imaginary values of k.17

D. End conditions

1. Array in a box

Suppose, now, that the entire array is placed in an infinite
square well !Fig. 5", so the wave function goes to zero at the
two walls (x#!l!s to the left, and x#Ns"r to the right":

A0e!ik! l"s ""B0eik! l"s "#0,
!47"ANeikr"BNe!ikr#0.

From Eqs. !23" and !27" we have

Fig. 3. Scattering from a rectangular barrier potential.
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A0##we!iksUN!1!UN!2$AN"zeiksUN!1BN ,
!48"B0#z*e!iksUN!1AN"#w*eiksUN!1!UN!2$BN .

Using the last three equations to eliminate A0 , B0 , and BN ,
the first delivers an implicit formula for the allowed energies;
after some trigonometric manipulation this reduces to

UN!+"sin#k!r"l"s "$#UN!1!+"4$w$sin#k!r"l ""5w$

!$z$sin#k!r!l ""5z$6, !49"

where 5w and 5z are the phases of w and z, respectively:

w#$w$ei5w, z#$z$ei5z. !50"

If the array is centered in the well, so that the left and right
gaps are equal (l#r), Eq. !49" simplifies further:

UN!+"sin#k!2r"s "$#UN!1!+"4cos!2kr "Im!w "

"sin!2kr "Re!w "!Im!z "6. !51"

For instance, if the unit cell is a delta function #Eq. !36"$,
and the left/right gaps are equal to the cell spacing (l#r
#0),18 the condition for the allowed energies is just

UN!+"sin!ks "#0. !52"

Either sin(ks)#0, in which case the wave function vanishes
at each delta function, and we recover an unperturbed eigen-
state of the infinite square well, or else UN(+)#0, which #in
view of Eq. !33"$ means sin(N"1),#0, or (N"1),#n7 ,
and hence #Eqs. !34" and !38"$

cos!ks "". sin!ks "#cos" n7
N"1 # !n#1,2,3,...,N ".

!53"
These results are illustrated in Fig. 6 for N#0 !the un-
adorned infinite square well", N#1, N#2, and N#3. Notice
that every (N"1)th level is unperturbed #these are the ones
that come from sin(ks)#0]. For N#25 !Fig. 7" the emerging

Fig. 4. Transmission coefficients for the periodic - po-
tential. The horizontal axis is 8#ks#s!2mE/% , and
we used mcs#2%2. In the last figure +#cos ,, where ,
is the Bloch phase.

Fig. 5. Infinite square well with N arbitrary potentials.

141 141Am. J. Phys., Vol. 69, No. 2, February 2001 D. J. Griffiths and C. A. Steinke



band structure is clearly visible, as the intermediate levels are
squeezed in next to the unperturbed ones.19

2. Periodic boundary conditions
We recover the Kronig–Penney model itself by joining the

tail of the array to its head !forming a true periodic system":
(N!x"Ns "#(0!x ", !54"

which is to say
ANeikx"BNe!ikx#A0eikx"B0e!ikx,

or

"A0B0 ##"AN
BN

# ,
and hence #Eq. !23"$

PN#I. !55"
From Eqs. !22" and !27" it follows that

we!iksUN!1!+"!UN!2!+"#1, zeiksUN!1!+"#0,
so

UN!1!+"#0, UN!2!+"#!1,
or #Eq. !33"$

sin!N,"
sin , #0,

sin!N!1 ",
sin , #!1,

where ,#cos!1 +. The first of these yields N,#7l , for
some integer l; the second says

sin!N,"cos ,!cos!N,"sin ,
sin , #!1,

or cos(N,)#1, so cos(7l)#1, and hence l must in fact be an
even integer. It follows #Eqs. !29" and !34"$ that

cos" 27 jN ##Re!w "cos!ks ""Im!w "sin!ks "

with j#1,2,3,...,N . !56"
This equation determines the allowed energies of the system
and yields the familiar band structure for a periodic lattice.
The wave functions defined in Eq. !19" do not, in general,

satisfy Bloch’s theorem, but it is possible to choose a basis
set that does !in the potential region !a9x9Ns"a). Let

"An
Bn

##D" Ān

B̄n
# , !57"

where

D#" zeiks zeiks

!ei,!we!iks" !e!i,!we!iks"
# !58"

is the matrix that diagonalizes P !see Ref. 10". Then

" Ān

B̄n
# #" ei, 0

0 e!i,# " Ān"1

B̄n"1
# , !59"

and the ‘‘upper’’ state (B̄n#0 for all n" satisfies

(n"1!x"s "#e!i,(n!x ", !60"
which is Bloch’s theorem with phase !,, while the ‘‘lower’’
state (Ān#0) satisfies

(n"1!x"s "#ei,(n!x ", !61"
which is Bloch’s theorem with phase ,.

III. MECHANICAL WAVES

In this section we explore four applications in classical
mechanics:20 transverse waves on weighted strings, longitu-
dinal waves on loaded rods, acoustic waves in corrugated
tubes, and water waves crossing a series of sandbars. Wher-
ever possible we borrow the terminology and results from
Sec. II. In particular, we continue to use the complex nota-
tion, with the understanding, always, that the physical wave
is the real part. For example, if

'!x ,t "#Aeikxe!i:t, !62"

Fig. 6. Energy levels for an infinite square well with !a"
no - potentials, !b" one - potential, !c" two - potentials,
and !d" three - potentials. We used mcs#4%2.

Fig. 7. Energy levels for 25 delta functions in the infinite square well.

142 142Am. J. Phys., Vol. 69, No. 2, February 2001 D. J. Griffiths and C. A. Steinke



with the complex amplitude
A#$A$ei5, !63"

the actual wave is
Re!'"#$A$cos!kx!:t"5", !64"

with !real" amplitude $A$ and phase constant 5.

A. Transverse waves on a weighted string

Imagine a uniform taut string, infinitely long !or long
enough, at any rate, so that we don’t have to worry about
waves reflected from the ends". In the central portion we
attach N equal weights, at regular intervals s !Fig. 8"—or, if
you prefer, we splice in N identical segments of greater !or
lesser, or varying" density.21 If we now shake the !distant"
left end sinusoidally, at angular frequency :, a wave propa-
gates down the line, and we would like to know how much is
transmitted !and how much reflected" when it encounters the
weights.
For small oscillations, transverse displacements '(x ,t) of

the string are governed by the classical wave equation,
&2'

&t2 #v2
&2'

&x2 , !65"

with propagation speed

v!x "#!T/;!x ", !66"

where T is the tension and ;(x) is the linear mass density.
Separable solutions take the form

'!x ,t "#(!x "e!i:t, !67"
with

d2(
dx2 #!k2( ,

where

k!x ")
:

v!x " . !68"

Within each cell the mass density ;(x) and hence also v(x)
and k(x) are functions of x, but we shall reserve the letter k
!with no argument" for the constant ambient value on the
open portions of the string.
For a single cell the solution is exactly the same as before

#Eq. !4"$; the only difference is that the function (ab now
satisfies Eq. !68" !and the attendant boundary conditions"
instead of the Schrödinger equation. The time reversal argu-
ment runs the same as before #complex conjugation is nec-
essary to restore the canonical form of the time dependence,
Eq. !67"$. Conservation of probability becomes conservation
of energy, but the algebraic consequence is the same #Eq.
!13"$. Thus the transfer matrix retains the generic structure of
Eq. !17", and all the machinery of Sec. II carries over.
For example, suppose the unit cell consists of a single

point mass m at x#0. Then

'!x ,t "#! Aeikxe!i:t"Be!ikxe!i:t if x$0,
Ceikxe!i:t"De!ikxe!i:t if x&0.

!69"

Continuity at the join implies

A"B#C"D . !70"
Meanwhile, the net !transverse" force on m is !Fig. 9"

T sin 5"!T sin 5!(T<" &'&x # !71"

!where < denotes the change in the quantity that follows",
and Newton’s second law gives

T<" &'&x ##m
&2'

&t2 . !72"

According to Eq. !69", then,

Tik!C!D!A"B "#!m:2!C"D ". !73"
Solving Eqs. !70" and !73" for A and B in terms of C and D,
we find

"AB ##" 1!i= !i=
i= 1"i= # " CD # , !74"

where =)m:2/2kT . This is identical to the transfer matrix
for quantum scattering from a delta function function #Eq.
!37"$, with .→!= ,22 and we can immediately read off the
transmission coefficient for an array of N such masses #Eq.
!39"$:

TN#
1

1"#=UN!1!+"$
2 , !75"

where #Eq. !38"$

+#cos!ks "!= sin!ks ". !76"

In this context, of course, TN does not refer to the probability
of transmission, but rather to the fraction of the energy trans-
mitted. If you wanted, for some reason, to design a string
that would not transmit waves in a certain frequency range,
you could attach weights in such a way that the excluded
range falls into one of the ‘‘gaps’’ where T→0 !Fig. 4".
Of course, infinite strings are expensive, and awkward to

work with in the laboratory, but it is easy to test these results
using an ordinary standing-wave apparatus with a finite
string nailed down at the two ends. This is analogous to
putting the quantum system in an infinite square well, and we
can simply quote our previous results !Sec. II D 1".23
The analog of the rectangular barrier !Sec. II C 2" is a seg-

ment of string with a different !constant" mass density, ;!.

Fig. 8. A periodically weighted string.

Fig. 9. The transverse force on the weight is T(sin 5"!sin 5!).
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Since the boundary conditions are the same as before !con-
tinuity of ( and d(/dx), the solution is unchanged #Eqs.
!40"–!43"$, with

k#:!;

T , k!#:!;!
T . !77"

B. Longitudinal waves on a loaded rod

Next consider compressional waves on a long uniform
rod. Let '(x ,t) be the displacement of a point whose equi-
librium position is x. Newton’s second law, applied to a seg-
ment of length <x , says24

&F
&x <x#S><x

&2'

&t2 , !78"

where F is the tensile force, S the cross-sectional area, and >
the mass density. For small disturbances the stress (F/S) is
proportional to the strain (&'/&x):

F
S #Y

&'

&x , !79"

where Y is Young’s modulus for the material. Combining
Eqs. !78" and !79" we find that !in regions where S and Y are
constant" ' satisfies the classical wave equation !65", with
propagation speed

v#!Y /> . !80"

!To reduce the speed one can replace the rod with a spring; if
the spring constant for a segment of length L is K, then Y
→KL/S , and v#!KL/; , where ; is the mass per unit
length."
Now imagine loading the rod by splicing in a sequence of

N identical cells of varying area and composition, so that Y,
>, and/or S are locally periodic functions of x !in the spring
case we would vary the stiffness and/or the mass per unit
length".25 If the unit cell consists of a single point mass m
embedded in the rod at point x#0, then #using Newton’s
second law and Eq. !79"$:

m
&2'

&x2 #<F#SY<" &'&x # , !81"

which is the same !apart from the constants" as Eq. !72" for
the transverse case, and we recover Eq. !74", with =
#m:2/2kSY !or, for a spring, =#m:2/2kKL). Again, we
have the analog to quantum scattering from a delta function
well.
If the unit cell consists of a uniform segment !of length

2a) with parameters >!, Y !, and S!, the boundary condi-
tions are !1" '(x ,t) continuous, and !2" F(x ,t) continuous
!otherwise there would be a net force on a point of zero
mass". Therefore #Eq. !79"$

<" SY &'

&x ##0. !82"

This time it is not simply the derivative of ' that is continu-
ous; the transfer matrix !41" is unaffected, but in the defini-
tion of 0 #Eq. !42"$, k is multiplied by SY and k! by S!Y !.
If S and Y vary continuously, the situation is more com-

plicated. Equations !78" and !79" yield a modified wave
equation

&2'

&t2 #
Y
>

&2'

&x2 "
1
S>

d!SY "
dx

&'

&x . !83"

If substantial variations occur only over a scale large com-
pared to the wavelength, then the second term on the right is
negligible, and the waves simply propagate with a speed that
depends on x #Eq. !80"$. But if the variations are significant
on a scale comparable to !or less than" the wavelength, then
the results depend on the functional forms of S(x) and Y (x).
We’ll see some examples in Sec. III C 2.

C. Acoustics

1. Plane waves

Sound propagation in a perfect fluid satisfies the classical
wave equation; in one dimension,

&2'

&t2 #v2
&2'

&x2 , !84"

where '(x ,t) now represents the pressure above ambient.
For an ideal gas the wave speed is

v#!,RT0, !85"

where T0 is the !ambient" temperature, R is the gas constant,
and , is the ratio of the specific heats.26 It is not easy to
conceive of a realistic system in which the relevant param-
eters !, and/or T0) vary in a locally periodic manner,27 but
we can set up baffles to force locally periodic boundary con-
ditions.
Suppose a monochromatic sound wave encounters a pane

of glass, at normal incidence; as always,

'!x ,t "#! Aeikxe!i:t"Be!ikxe!i:t if x$0
Ceikxe!i:t"De!ikxe!i:t if x&0,

!86"

with k#:/v . !We assume the window is thin, compared to
the wavelength, and can simply be treated as a heavy layer at
x#0, with mass-per-unit-area ?." Newton’s second law says

<'#!?
&u
&t , !87"

where u is the velocity of the glass !which is also the veloc-
ity of the gas on either side"; it is related to the pressure:28

&'

&x #!>0
&u
&t , !88"

where >0 is the ambient gas density !which we shall assume
is the same on both sides". Thus the boundary conditions at
the window are

<" &'&x ##0, <'#
?

>0
" &'&x # . !89"

This yields a transfer matrix reminiscent !except for the
signs" of the delta-function barrier !Sec. II C 1" and the string
loaded with a point mass !Sec. III A":

"AB ##" 1!i= i=
!i= 1"i= # " CD # , !90"

where =)?k/2>0 . For a succession of N such windows, a
distance s apart, the transmission coefficient would be
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TN#
1

1"#=UN!1!+"$
2 , !91"

with

+#cos!ks "!= sin!ks ". !92"

Such an array can be used as an acoustic filter, transmitting
sound in the ‘‘allowed’’ frequency ranges and rejecting it in
the ‘‘forbidden’’ gaps.29

2. Sound waves in pipes

Sound waves confined to a tube satisfy an equation iden-
tical in structure to the one describing longitudinal waves in
an elastic rod #Eq. !83"$.30 In this context it is known as the
‘‘horn equation,’’ in recognition of its most familiar applica-
tion:

&2'

&t2 #v2" &2'&x2 "
1
S
dS
dx

&'

&x # . !93"

Here v is again the speed of sound #Eq. !85"$ and S is the
cross-sectional area of the tube.31 If S is constant, we recover
the classical wave equation, and the conditions of Sec.
III C 1. For variable cross section there are precious few
cases that can be solved analytically.32 The simplest of these
is the ‘‘exponential horn,’’

S!x "#S!0 "e2@x, !94"

for which Eq. !93" reduces to

&2'

&t2 #v2" &2'&x2 "2@
&'

&x # . !95"

For monochromatic waves, '(x ,t)#((x)exp(!i:t), and
the spatial wave function satisfies the damped harmonic os-
cillator equation:

d2(
dx2 "2@

d(
dx "k2(#0 !96"

!with k#:/v , as always". The general solution is

(!x "#e!@x!A!eik!x"B!e!ik!x", !97"

where

k!)!k2!@2. !98"

Now imagine a long tube, of constant cross section S0
joined to an expanding exponential horn at x#!a , followed
symmetrically by a contracting horn from x#0 out to x#a
!Fig. 10":

S!x "#)
S0 if x$!a
S0e2@!a"x " if !a$x$0
S0e2@!a!x " if 0$x$a
S0 if x&a .

!99"

Then

(!x "#)
Aeikx"Be!ikx if x$!a

e!@x!A!eik!x"B!e!ik!x" if !a$x$0

e@x!A"eik!x"B"e!ik!x" if 0$x$a
Ceikx"De!ikx if x&a .

!100"
This time ' and u are continuous, so #Eq. !88"$

<(#0, <" d(dx ##0 !101"

at each boundary, and !after some algebra" we obtain the
elements of the transfer matrix:

w#
e2ika

!k!"2 #
k2 cos!2k!a "!@2!ikk! sin!2k!a "$ ,

!102"
z#!i

2@k
!k!"2

sin2!k!a ".

We can now immediately construct the transmission coeffi-
cient for a tube with N such exponential corrugations, using
Eqs. !29" and !30". Figure 11 shows a typical graph, for N
#10.
Of course, exponential corrugation is rather artificial; we

used it only as an illustration. It is possible to treat tubes with
rectangular corrugations, though the method is necessarily
less rigorous. The horn equation !93" presupposes that any
changes in cross section are gradual. In the vicinity of an
abrupt change the waves are no longer even one dimen-
sional, as they ‘‘diffract’’ around the edge. Still, at frequen-
cies well below cutoff the transverse modes are rapidly at-
tenuated, and the non-plane-wave zone is short enough that it
can be ignored.33 In this low-frequency regime the pressure
is a continuous function of x, while the continuity equation
!expressing conservation of mass" requires that the product
Su be continuous; the boundary conditions are therefore

<(#0, <" S d(dx ##0. !103"

For a rectangular bulge !Fig. 12"

Fig. 10. Double exponential horn #Eq. !103"$; S(x) is the cross-sectional
area.

Fig. 11. Transmission coefficient for ten exponential corrugations (,#0.5,
a#1, s#2, frequency f in hertz".
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(!x "#! Aeikx"Be!ikx if x$!a
Feikx"Ge!ikx if !a$x$a
Ceikx"De!ikx if x&a .

!104"

!In this case k#:/v is the same in all three regions." Invok-
ing the boundary conditions #Eq. !103"$, we obtain the trans-
fer matrix elements

w##cos!2ka "!i/"sin!2ka "$e2ika,
!105"z#i/! sin!2ka ",

the same as Eq. !41" !with /')(1/2)#0'(1/0)$), except
that this time

0)
S1
S2
. !106"

For N corrugations !separated by a distance s", the transmis-
sion coefficient is #Eq. !32"$

TN#
1

1"#/!sin!2ka "UN!1!+"$
2 , !107"

where #Eq. !29"$

+#cos!2ka "cos!kl "!/" sin!2ka "sin!kl ", !108"

with l )s!2a , as before.
These results are similar in form to quantum scattering

from a rectangular barrier !Sec. II C 2", but the band structure
is quite different, because 0 !and hence /'" are now con-
stants, independent of the frequency. For example, if the
spacing between corrugations is the same as their width (s
#4a), then

+#1!!1"/""sin2!2ka ". !109"

Suppose the radii are 4 and 5 cm, and a#2.5 cm. In that case
the cutoff frequency !above which our analysis fails" is
around 4000 Hz. In Fig. 13 we plot the transmission coeffi-

Fig. 12. Rectangular corrugation; S(x) is the cross-sectional area.

Fig. 13. Corrugated tube acoustic filter. In the last fig-
ure +#cos ,, where , is the Bloch phase.
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cients for N#1, 2, 4, 8, and 24, as well as the Bloch phase.
The striking feature is of course the central gap !from around
1500 to 2000 Hz", in which no sound is transmitted. Such
acoustic filters are used in mufflers, gun silencers, and ven-
tilation systems.34
This system is reminiscent of Crawford’s

‘‘corrugahorn.’’ 35 Crawford was concerned with an entirely
different phenomenon !stimulation of resonances by blowing
air through the tube", but he noted in passing that the funda-
mental was ‘‘about 4%’’ lower in pitch than it would be for
a smooth pipe of the same overall length and diameter—an
effect he attributed to the ‘‘extra’’ length resulting from the
corrugations. Using the method of Sec. II D 1 we are now in
a position to calculate the resonant frequencies of a corruga-
horn. For a completely corrugated tube (l#r#0), with
spacing equal to width (s#4a), the resonance condition
#Eq. !51"$ becomes

2 sin!2ka "cos!2ka "UN!+"

#sin!2ka "#!1!/""cos!2ka "!/!$UN!1!+",
!110"

so either
sin!2ka "#0, !111"

or else
2 cos!2ka "UN!+"##!1!/""cos!2ka "!/!$UN!1!+"

!112"
#with + given by Eq. !109"$. The former yields wavelengths
1#4a/n (n#1,2,3,...); there is a node at each edge, so these
modes are unperturbed by the corrugations. The fundamen-
tal, however, corresponds to the smallest k that satisfies Eq.
!112".36
Crawford says his ‘‘Hummer’’ is L#3 ft#91 cm long, the

corrugations are s#0.64 cm apart, and the radius ranges
from r1#1.2 cm to r2#1.5 cm.37 Evidently N#L/s!1
#141, a#s/4#0.16 cm, /"#(1/2)#(r1 /r2)2"(r2 /r1)2$
#1.10, and /!#(1/2)#(r1 /r2)2!(r2 /r1)2$#!0.46. So

+#1!!2.10 " sin2!0.32k " !113"
#Eq. !109"$, and the resonance condition !112" is
2 cos!0.32k "U141!+"##!0.10 cos!0.32k ""0.46$U140!+".

!114"
Roots to this equation determine kn !whence f n#vkn/27).
Results are shown in Fig. 14 !we used 340 m/s for the speed
of sound". In particular, f 1#182Hz, as compared with a
‘‘smooth pipe’’ value of v/2L#187Hz.38 This confirms
Crawford’s observation that corrugation suppresses the fun-

damental, and the theoretical factor !3%" is reasonably close
to his empirical estimate !4%".

D. Water waves

1. Shallow waves and sandbars

In the case of water waves, we let !the real part of" '(x ,t)
represent the height of the surface above its equilibrium
level. For small displacements, sinusoidal waves,

'!x ,t "#(!x "e!i:t

with
(!x "#Aeikx"Be!ikx, !115"

propagate in regions of constant depth h at a speed39

v#
:

k #!g
k tanh!kh ", !116"

where g is the acceleration due to gravity. In ‘‘shallow’’
water, where h/1#hk/27$0.05, Eq. !116" reduces to

v#!gh , !117"
and the waves are nondispersive !the speed is independent of
frequency"; in ‘‘deep’’ water, where h/1&0.5, Eq. !116" be-
comes

v#!g
k , !118"

and the waves are dispersive, but insensitive to depth. The
intermediate regime, 0.05$h/1$0.5, is more complicated.
We shall restrict our attention to shallow water waves.40
Suppose such a wave #Eq. !115"$ encounters a shoal or

sandbar, where the depth changes abruptly from h to h! !Fig.
15". This is analogous to the rectangular barrier in Sec.
II C 2; ((x) is given by Eq. !40", with k#:/!gh and k!
#:/!gh!. The boundary conditions are41

<(#0, <" h d(dx ##0, !119"

and the transfer matrix is again given by Eq. !41", except that
in the definition of 0 #Eq. !42"$, k must be multiplied by h,
and k! by h!. The transmission coefficient for a series of
sandbars is given, as always, by Eq. !32", with the variables
defined in Eq. !43". Such an array would prevent the passage
of waves in the forbidden frequency bands.42
For slowly varying depths, surface waves satisfy43

d2(
dx2 "

1
h
dh
dx

d(
dx "k2(#0. !120"

This is the time-independent form of Webster’s horn equa-
tion #Eq. !93"$, and the results of Sec. III C 2 carry over
directly.

Fig. 14. Calculated resonant frequencies for Crawford’s Hummer.

Fig. 15. A shoal or sandbar.
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2. Water waves in canals
Water waves in a narrow channel are rather like sound

waves in a tube. At low frequencies they are essentially one
dimensional. We can provide for local periodicity either by
modulating the depth of the channel h(x) or by varying its
width w(x). The continuity equation says

w
&'

&t #!
&

&x !whu ", !121"

where u(x ,t) is the horizontal component of the velocity,44
given by

&u
&t #!g

&'

&x . !122"

If the width is constant, the theory is the same as for shallow
ocean waves !Sec. III D 1"; if the depth is constant, we re-
cover Webster’s horn equation #Eq. !93", with w(x) in place
of S(x)], for continuous variation, and boundary conditions
!103" !again, with w in place of S" for abrupt changes.45 In
either case the theory proceeds exactly as before.
The water–wave analog to the corrugahorn would be a

long narrow tank with varying width and/or depth. The
boundary condition at the ends is &'/&x#0, instead of '
#0, but that merely shifts the phase. The spectrum of normal
modes should exhibit the familiar quasiband structure, but as
far as we know this has not been tested in the laboratory.46
A related geophysical phenomenon is ‘‘sloshing,’’ or
‘‘seiches,’’ in long narrow bays and lakes.47

IV. ELECTROMAGNETIC WAVES
A. Transmission lines

A transmission line consists of two very long parallel con-
ductors. Various geometries are commonly used—coaxial
cables, paired wires, separated ribbons—and the space be-
tween the conductors is typically filled with insulating mate-
rial. Transmission lines are conveniently analyzed in terms
of ‘‘distributed’’ circuit elements: C, the capacitance per unit
length, and L, the inductance per unit length !we shall con-
sider resistanceless lines only". The voltage difference be-
tween the conductors, V(x ,t), and the current in each, I(x ,t)
for one and !I(x ,t) for the other, satisfy48

&V
&x #!L

&I
&t ,

&I
&x #!C

&V
&t . !123"

Differentiating, to separate the variables, we obtain the clas-
sical wave equation,

&2'

&t2 #v2
&2'

&x2 , !124"

where '(x ,t) represents either V or I, and the speed of
propagation is49

v#
1

!LC
. !125"

The current and the voltage are both continuous at a junc-
tion between one transmission line and another, so the
boundary conditions on ' are

<'#0, <" &'&x ##0. !126"

This system is mathematically identical to the rectangular
barrier !Sec. II C 2"; the transfer matrix !if we insert a seg-
ment with different capacitance and inductance" is given by
Eq. !41", with

k#
:

v
#:!LC, k!#

:

v!
#:!L!C!. !127"

The transmission coefficient for N identical segments follows
immediately from Eq. !32". Such a transmission line will
freely pass signals in the allowed frequency bands, but is
essentially nonconducting in the forbidden gaps.

B. Layered optical media

Consider now a plane monochromatic electromagnetic
wave, propagating through a homogeneous linear material of
permittivity A and permeability ;:50

E!x ,t "#!Aeikx"Be!ikx"e!i:tŷ,
!128"

B!x ,t "#
1
v
!Aeikx!Be!ikx"e!i:tẑ,

where !again" k#:/v and v#1/!A; . Here !the real part of"
E is the electric field, and !the real part of" B is the magnetic
field; the wave is polarized in the y direction, and travels in
the 'x direction. To conform with our previous notation, let
'(x ,t)#((x)e!i:t be the y component of E(x ,t):

E!x ,t "#(!x "e!i:tŷ, B!x ,t "#!
i
:

d(
dx e

!i:tẑ. !129"

Now suppose this wave encounters a region !say, a pane
of glass" in which A and ; are different !call them A! and ;!".
This is the optical analog to the rectangular barrier !Sec.
II C 2". At the boundaries ('a), E* and (1/;)B* are continu-
ous, so

<(#0, <" 1; d(
dx ##0. !130"

The transfer matrix is the same as before #Eq. !41"$, but this
time

0)!A;!
A!;

. !131"

For N layers, the transmission coefficient !representing, in
this context, the fraction of the incident intensity that makes
it through" is51

TN#
1

1"#/!sin!2k!z "UN!1!+"$
2 , !132"

with
+#cos!2k!a "cos!kl "!/" sin!2k!a "sin!kl ", !133"

where !as always" l )s!2a . As in the quantum case !Fig.
4", the emerging band structure is apparent with surprisingly
few layers. But the details are different, because !as in the
acoustic analog, Fig. 13" /' are now independent of :.52

V. THE DIRAC EQUATION

The Dirac equation describes relativistic particles of spin
1/2 !such as the electron". In the absence of interactions, it
reads53
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i%,;&;'!mc'#0, !134"
where m is the particle’s mass,

&;#" 1c &

&t ,
&

&x ,
&

&y ,
&

&z #
is the four-dimensional gradient operator, and summation
over the index ;(0→3) is implied. In block notation the
(4%4) Dirac matrices ,; are

,0" 1 0
0 !1 # , , i#" 0 ? i

!? i 0 # ! i:1#x ,2#y ,3#z ",

!135"
where ? i are the (2%2) Pauli matrices,

?x#" 0 1
1 0 # , ?y#" 0 !i

i 0 # , ?z#" 1 0
0 !1 # ; !136"

' itself is a four-element spinor:

'#" '1
'2
'3
'4

# . !137"

In the presence of interactions, Eq. !134" becomes
i%c,;&;'!!mc2"V",;A;"'#0, !138"

where V is an external scalar potential and A; a vector po-
tential !it is possible to introduce other kinds of interactions,
of course, but we shall restrict our attention to these two".

A. Reduction to one dimension

In the one-dimensional case of interest here, '(x ,y ,z ,t)
→'(x ,t), the y and z derivatives are zero, and the three-
vector potential drops out, A;#(A0,A)→(A ,0); the remain-
ing potentials, V and A, depend only on x, and Eq. !138"
reduces to

i%,0
&'

&t "i%c,1
&'

&x !!mc2"V"A,0"'#0. !139"

In component form,

i%
&'1

&t "i%c
&'4

&x !!mc2"V"A "'1#0,

i%
&'2

&t "i%c
&'3

&x !!mc2"V"A "'2#0,

!140"
i%

&'3

&t "i%c
&'2

&x "!mc2"V!A "'3#0,

i%
&'4

&t "i%c
&'1

&x "!mc2"V!A "'4#0.

A simplifying feature of the one-dimensional regime is that
the four components of ' mix only in pairs: '1 with '4 ,
and '2 with '3 . This invites us to introduce the two-
component spinor

'#"'1
'4

#
or

"'2
'3

# , !141"

in terms of which the one-dimensional Dirac equation as-
sumes the standard form

i%
&'

&t "i%cB
&'

&x !!mc2"V ".'!A'#0, !142"

where B#?x and .#?z .54
As always, we are interested here in ‘‘monochromatic’’

waves:

'!x ,t "#(!x "e!iEt/%; !143"

this reduces the Dirac equation to time-independent form:

i%cB
d(
dx #!mc2"V ".(#!A!E "( . !144"

Calling the upper component (u and the lower component
( l :

i%c
d( l

dx #!mc2"V"A!E "(u ,

!145"
i%c

d(u

dx #!!mc2!V"A!E "( l .

Evidently

( l#
!i%c

!E"mc2"V!A "
d(u

dx , !146"

so we need only determine (u . Differentiating the second
part of Eq. !145" and eliminating ( l yield

d2(u

dx2 !
1

!E"mc2"V!A " " dVdx!
dA
dx # d(u

dx

"
#!E!A "2!!mc2"V "2$

!%c "2 (u#0. !147"

In particular, in regions where the potentials are zero,

d2(u

dx2 #!
#!E "2!!mc2"2$

!%c "2 (u , !148"

and the general solution is

(u!x "#Aeikx"Be!ikx, !149"

with55

k)
1
%c

!E2!!mc2"2. !150"

B. The transfer matrix

The theory of scattering proceeds much as before !Sec.
II A", except that (u now satisfies Eq. !147", instead of
Schrödinger’s equation, in the potential region a$x$b . It is
easy to check that if '(x ,t) is a solution to the one-
dimensional Dirac equation !142", so too is the ‘‘time-
reversed’’ spinor

.'*!x ,!t ". !151"

In particular, for the free-particle solution #Eqs. !149" and
!146"$
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(#" Aeikx"Be!ikx

%ck
!mc2"E " !Ae

ikx!Be!ikx"# , !152"

we obtain

.(*#" A*e!ikx"B*eikx

!%ck
!mc2"E " !A

*e!ikx!B*eikx"# . !153"

Thus the transcription (A ,B)→(B*,A*) takes solutions into
solutions, as in the nonrelativistic case !Sec. II A", and the
transfer matrix again satisfies Eq. !11". Meanwhile, the cur-
rent

j!x "#c(†B( !154"

is conserved (d j /dx#0), as one can quickly show using Eq.
!144". For the free particle solution #Eq. !152"$,

j#
2%c2k
mc2"E ! $A$2!$B$2", !155"

so Eq. !13" holds as well, and the transfer matrix takes the
same generic form #Eqs. !17" and !18"$ as before. That’s all
we need to recover the N-cell solution #Eq. !30"$. Moreover,
Eq. !155" indicates that !even though we are now dealing
with a two-component spinor wave function" $A$2 still mea-
sures the incident current, $B$2 the reflected current !and $C$2
the transmitted current", so T retains its essential physical
interpretation.

C. Examples

1. Delta functions

Suppose
V!x "#g-!x ", A!x "#h-!x ". !156"

Integrating Eq. !144" across the singularity gives

ic%B<(#!g."h "(̃!0 ", !157"
where

(̃!0 ")+ -!x "(!x "dx . !158"

This integral is notoriously ambiguous,56 because ((x) is
discontinuous at the origin. Many authors take (̃(0) to be
the average:

(̃!0 "# 1
2#(!0"""(!0!"$ . !159"

This leads to the transfer matrix elements

w#1"2&k!g2!h2""2i!Eh"mc2g "
k!4%2c2!g2"h2" ' ,

!160"
z#4i

!Eg"mc2h "
k!4%2c2!g2"h2" ,

which satisfy the constraint $w$2!$z$2#1, and reduce cor-
rectly to Eq. !37" in the nonrelativistic limit !with g"h as
the strength of the delta function". But they are
inconsistent,57 as we shall see, with any representation of
-(x) as the limit of a sequence of finite functions.

2. Rectangular barriers

At a rectangular barrier, with V(x)#V0 and A(x)
#A0 ,(u(x) takes the usual form #Eq. !40"$, with #Eq. !147"$

k#
1
%c

!E2!!mc2"2,

!161"
k!#

1
%c

!!E!A0"2!!mc2"V0"2.

The ‘‘lower’’ component ( l(x) is given by Eq. !146". At the
boundaries (x#'a), (u and ( l are both continuous; this
follows from Eq. !145". The transfer matrix is the same as
before #Eq. !41"$, with k and k! given by Eq. !161", except
that in the definition of 0,

k→
k

!E"mc2" , k!→
k!

!E"mc2"V0!A0"
. !162"

In the nonrelativistic regime (E#mc2"Enr , with Enr , V0 ,
and A0 all (mc2) it reduces to the Schrödinger form !Sec.
II C 2, with V0→V0"A0). But in the delta-function limit

V0#
g
2a , A0#

h
2a , a→0, !163"

we obtain transfer matrix elements
w#cos8!iB" sin8 , z#iB! sin8 , !164"

with

8)
!h2!g2

%c ,
!165"

B')
1
2 "!!E!mc2"!h!g "

!E"mc2"!h"g "'!!E"mc2"!h"g "
!E!mc2"!h!g " # ,

which is inconsistent with Eq. !160". McKellar and
Stephenson57 show that this result is independent of the
shape of the limiting functions used to represent the delta
function, and it is clear that the customary prescription #Eq.
!159"$ cannot be sustained. Equation !160" may describe
some point interaction,58 but it is not a delta function.
In Fig. 16 we plot the transmission coefficients for locally

periodic rectangular barriers.59 One case is of particular in-
terest: If V0#0, the transmission coefficient for a single bar-
rier remains nonzero as A0 approaches infinity:

T1→
1

1"& mc2

E2!!mc2"2'sin2" 2A0a%c # . !166"

Ordinarily, one would expect the transmission through an
infinitely high potential to vanish !as is the case for V0
→3). This is a manifestation of the Klein paradox, resulting
from pair production at the potential step.60

VI. SUMMARY AND CONCLUSION

When a monochromatic wave in one dimension encoun-
ters a change in the properties of the propagating medium,
reflected and transmitted waves are generated. The transfer
matrix M relates the incoming and outgoing amplitudes on
the left, A and B, to the outgoing and incoming amplitudes
on the right, C and D:
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"AB ##M" CD # . !167"

Time reversal invariance and the relevant conservation law
!energy, mass, charge, or probability" dictate the generic
form of the transfer matrix:

M#" w z
z* w*#

with

$w$2!$z$2#1. !168"

For a locally periodic structure consisting of N repetitions of
this ‘‘unit cell,’’ a distance s apart, the transfer matrix is

MN#" #we!iksUN!1!+"!UN!2!+"$eikNs zUN!1!+"e!ik!N!1 "s

z*UN!1!+"eik!N!1 "s #w*eiksUN!1!+"!UN!2!+"$e!ikNs# , !169"

where k is the wave number, UN is the Nth Chebychev poly-
nomial of the second kind, and

+) 1
2!we!iks"w*eiks". !170"

In particular, the transmission coefficient is

TN#
1

1"# $z$UN!1!+"$
2 . !171"

Fig. 16. Transmission coefficients for the Dirac equa-
tion with rectangular barriers. In all cases m#c#%
#a#1, s#4. !a" N#1, A0#0, V0#4; !b" N#1, A0
#4, V0#0; !c" N#1, A0#V0#4; !d" N#2, A0#4,
V0#0; !e" N#1, A0#0, E#2; !f" N#1, V0#0,
E#2.
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We have explored a variety of applications, including
transverse waves on a weighted string, longitudinal waves on
a loaded rod, acoustic waves in a corrugated tube, ocean
waves crossing a succession of sandbars, electromagnetic
waves in transmission lines, light waves in photonic crystals,
and quantum mechanical waves !both nonrelativistic and
relativistic" in lattices. This by no means exhausts the possi-
bilities !we have not considered waveguides,61 for example,
or optical fibers with varying index of refraction,62 or neu-
tron scattering from stratified media,63 or seismic
waves64—not to mention chemotherapy65—nor have we dis-
cussed applications to electrons, photons, and phonons in
heterostructures, superlattices, and quantum dots,66 or—most
recently—all-plastic light-emitting diodes67". But we have
tried to illustrate the method in a broad range of contexts. For
although the essential result #Eq. !169"$ was discovered half
a century ago by Abelès,68 its relevance to the other disci-
plines has not been widely appreciated.
The characteristic feature of fully periodic systems is band

structure: The medium is ‘‘transparent’’ in some frequency
ranges and ‘‘opaque’’ in others. Even with a small number of
cells, locally periodic systems exhibit precursors of band
structure, with intervals of relatively high or low transmis-
sion. Equation !171" allows one to explore the emergence of
full band structure as N increases.
Perhaps the most remarkable thing about waves in locally

periodic media is that the problem can be solved in closed
form, for arbitrary N, and the solution can be expressed in a
tidy, succinct form. For some applications the fully periodic
analysis, as pioneered by Kronig and Penney, is entirely ad-
equate. However, with the increasing sophistication of tech-
nology and fabrication, the exact analysis, for a finite number
of layers, becomes critical to a complete understanding of
the process.
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OCKHAM’S RAZOR

Science treads everywhere, and worms itself under the scabs that religion regards as protecting
the special tender patches of human existence. The religious go to intellectual war to maintain that
in some areas secularly inspired logic cannot tread. Yet reductionist science is omnicompetent.
Science has never encountered a barrier that it has not surmounted or that we can at least reason-
ably suppose it has power to surmount and will in due course be equipped to do so. There is no
explicitly demonstrated validity in the view that there are aspects of the universe closed to science.
I can accept, given the success with which science has encroached on the territory once regarded
as traditionally religion’s, that many people hope its domain of competence will prove bounded,
with things of the spirit on that side of the fence and things of the flesh on this. But until it is
proved otherwise, there is no reason to suppose that science is incompetent when it brings its razor
to bear on belief.
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