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Abstract

In this lab we will determine the value of the acceleration of gravity g by
using a reversible pendulum, first developed by Henry Kater in 1815.

1 History

During the 18th and 19th centuries the field of geodesy became a quantitative sci-
ence. The goal of scientists was to determine the shape of the earth as well as how
the strength of gravity changed from location to location. The determination of g at
these different locations helped to give scientists a better understanding of what the
earth was made of. This information was particularly helpful in mining operations.
In early experiments, g was determined using the familiar equation for the period
of a simple pendulum,

T = 2π

√
L
g
. (1)

Figure 1: Henry Kater.
This method is of limited utility in making precision measurements of g, as Eq. 1
strictly applies only to a true simple pendulum, consisting of a point mass swinging
on a massless rod or string. For a real, or physical, pendulum, the period is given
as

T = 2π

√
I

mgl
. (2)

Here, I is the moment of inertia of the pendulum about the pivot point, m is the
pendulum’s mass, and l is the distance from this pivot to the center of mass. Even
for a carefully constructed physical pendulum the quantities I and l are difficult to
measure with great precision.

In 1815, Henry Kater developed a reversible pendulum, with which he could make
measurements of g to unprecedented accuracy. Kater’s key breakthrough was to
use a pendulum that could be swung from either of two pivots, located at opposite
ends of the pendulum. The periods when the pendulum is swung from each of the
pivots are recorded. When the mass distribution of the pendulum is adjusted so that
these two periods were equal, the difficult-to-measure quantities I and l cancel out,
and Eq. 1 applies again exactly.
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Figure 2: Kater’s original reversible pendulum.

2 Theory

2.1 The period of a physical pendulum

Consider a physical pendulum that can be swung from either of two pivots. To
make the argument concrete, our discussion will be in terms of the pendulum used
in this lab. The pendulum has two sets of “knife edge” pivots, parallel to each
other, from which the pendulum can swing. Because the knife edges are sharp and
parallel, the distance D between them can be precisely measured. This is a key
aspect of the reversible pendulum.

Defining the radius of gyration k as

k =

√
I
m
, (3)

Eq. 2 for the period of a physical pendulum can be written as

T = 2π

√
k2

gl
. (4)

From the parallel-axis theorem we have

k2 = k2
cm + l2, (5)

where kcm is the radius of gyration about the center of mass and, as before, l is the
distance from the center of mass to the pivot—i.e., to one of the knife edges. Then
Eq. 4 becomes

T = 2π

√
k2

cm + l2

gl
. (6)

Let T1 and T2 be the periods when the pendulum is swung from pivots 1 and 2
respectively; l1 and l2 are the distances from pivots 1 and 2 to the center of mass.
Then we can write

T1 = 2π

√
k2

cm + l2
1

gl1
and T2 = 2π

√
k2

cm + l2
2

gl2
(7)

Solving for k2
cm, the fixed radius of gyration about the center of mass, we find

that
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k2
cm =

gl1T 2
1

4π2 − l2
1 =

gl2T 2
2

4π2 − l2
2 , (8)

or

l1T 2
1 − l2T 2

2 =
4π2

g
(l2

1 − l2
2) (9)

After some manipulation, Eq. 9 gives

8π2

g
=

T 2
1 +T 2

2
l1 + l2

+
T 2

1 −T 2
2

l1− l2
. (10)

Note that l1 + l2 = D = 40.913± 0.003 cm, the distance between the knife edges.
Eq. 10 gives g in terms of the two periods and the two distances l. The right-
hand side of the equation can be viewed as an overall value (T 2

1 + T 2
2 )/D plus a

correction term. This correction term vanishes as T1 approaches T2. In the case
where T1 = T2 ≡ T exactly we have the simple result

g =
4π2D

T 2 (11)

2.2 Amplitude variation of the period

The results derived above are based on solving the differential equation for the
physical pendulum in the limit of small amplitude oscillations. When the amplitude
becomes large, we will need a more precise result. Using conservation of energy
we can write

mgl(cosθ − cosθ0) =
1
2

Iθ̇
2,

where θ0 is the maximum angle the pendulum reaches. We can rewrite this as

dt =

√
I

2mgl
dθ√

cosθ − cosθ0
=

T0 dθ

2π
√

2
√

cosθ − cosθ0
,

where we have used the fact that the period T0 for infinitesimal oscillations is
given by Eq. 2 as T0 = 2π(I/mgl)1/2. Integrating both sides over a quarter period
gives ∫ T/4

0
dt =

T
4
=
∫

θ0

0

T0 dθ

2π
√

2
√

cosθ − cosθ0
, (12)

or

T =

√
2T0

π

∫
θ0

0

dθ√
cosθ − cosθ0

(13)

The integral in Eq. 13 can be evaluated in terms of elliptic integrals. However,
we can derive an expansion for the period that will be accurate enough for our
purposes. Using the identity cosx = 1−2sin2(x/2), we can write Eq. 13 as

T =
T0

π

∫
θ0

0

dθ√
sin2(θ0/2)− sin2(θ/2)

(14)
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We now make the substitution sin(θ/2) = sin(θ0/2)sinφ , giving, after some alge-
bra, simply

T =
2T0

π

∫
π/2

0

dφ

cos(θ/2)
(15)

or

T =
2T0

π

∫
π/2

0

dφ√
1− sin2(θ0/2)sin2

φ

(16)

Because θ0 is small, we can expand the integrand in powers of sinθ0. To lowest
non-vanishing order, this gives

T =
2T0

π

∫
π/2

0

(
1+

1
2

sin2 θ0

2
sin2

φ + · · ·
)

dφ (17)

= T0

(
1+

1
π

sin2 θ0

2

∫
π/2

0
sin2

φ dφ

)
(18)

= T0

(
1+

1
4

sin2 θ0

2

)
≈ T0

(
1+

θ 2
0

16

)
. (19)

Thus the finite-amplitude period is always longer than the zero-amplitude period
T0.

3 Procedure

The basic goal of this lab is to make a precision measurement of g using a Kater’s
pendulum. By adjusting the two weights in a systematic way, you should be able
to get the two periods T1 and T2 to be quite close. Then Eq. 10 can be used to solve
for g.

Although the basic idea of the lab is simple, there are many issues that you will
need to think about as you try to get your best measurement of g. Here are a few
things you might want to think about, in no particular order:

• How will you handle the amplitude variation of the period? You can try to
use amplitudes small enough that the variation is negligible, but you might
find that the detector is very noisy in this regime, because the pendulum is
moving so slowly. A plot of T vs. θ0 would be interesting to compare with
Eq. 19.

• What errors are introduced simply by setting the pendulum down on the
bracket?

• Do air currents have an appreciable effect? How about people walking about?

• You can’t ever get the two periods exactly equal. But you can think of the
rightmost term in Eq. 10 as a correction term that goes to zero as T1 ap-
proaches T2. How small is it? How would you measure l1 and l2, and how
accurately would they need to me measured?

• Where should the photogate be placed? Is there any effect on the period as
you try different locations for it?
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These days, g is measured by directly by timing an object in free fall. Although this
seems like the most obvious way to measure g, this method is actually quite tricky
because the object falls at a modestly high speed, and because its position needs
to be measured very accurately while its falling. By using a laser interferometer
to measure the object’s position, however, and by performing the measurement in
a high vacuum to negate the effects of air resistance, such instruments can now
routinely measure g to about 1 part in a billion!

Although g has not been measured at our site with such an instrument, discussions
with scientists at the National Geodetic Survey show that the value in our lab is
9.79726±0.00002 m/s2.

4 Further Refinements

There are several other corrections that must be made in order to calculate g to the
highest possible accuracy [1]. First, the buoyancy of the pendulum in air slightly
decreases the gravitational torque on the pendulum compared to its value in a vac-
uum. This tends to increase the pendulum’s period. Second, as the pendulum
swings it effectively carries with it a certain volume of air that surrounds it. This
“added-mass” correction is small but not negligible. It is also quite difficult to
calculate [2]. See Refs. [1] and [2] for more information.
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