
PID Temperature Control

A PID controller is a general-purpose control system that attempts to au-
tomatically adjust a system so as to maintain its operation at a desired
setpoint. The purpose of this experiment is to gain experience in PID con-
trol by precisely controlling the temperature of a piece of aluminum. It is
possible, with this apparatus, to set the temperature of the metal to any-
thing between -5◦ C and 40◦ C, with temperature fluctuations on the order
of 0.02◦ C.

Theory

In any control system, there will be some setpoint So. So is the desired
output: it could be the temperature, the height of a levitating ball, the
position of a beam of protons, whatever. So is (generally) set by the user:
the thermostat setting at your house, for example, would be So.

There will also be an error signal δ in any control system. δ is the
difference between the setpoint So and the system state S. Ideally we want
δ to be zero, but that is rarely the case for any system complex enough to
need a PID controller.

Finally, there is the power output U for the control system. U is the
system output, which attempts to bring the value of δ back to zero. For
the case of a thermostat, U would be the power to the heater (cooler) if the
temperature was too cold (hot).

Proportional gain

The first and simplest approach to minimizing δ is to set U to be proportional
to δ.

Up = Kpδ

Kp is the proportional gain. If Kp is too low, then the system may take a
long time to get to the setpoint after a change in So. If Kp is too high, the
system may go into oscillation around So. Finding the “Goldilocks point”
in the middle is the challenge!

Integral gain

One problem with proportional gain is that if the system state S is equal
to the setpoint So, δ = 0 and Up = Kpδ = 0 also. For most real systems,
there are losses: heat loss through the building walls in the case of central

1



heating, for example. These losses require a steady-state value of U that is
not generally 0. As a result, the system will reach some state S′ < S such
that Up = Kpδ = Uloss. This “droop” is often undesirable.

The way of fixing “droop” is to keep track of the value of δ in the past.
If δ has been positive for awhile, increase U . Mathematically, this is most
conveniently expressed as an integral:

Ui = Ki

∫
δ(t) dt

This eliminates droop: if there is a constant value of δ, it contributes to the
integral and increases the power output Ui until δ goes back to zero.

If Ki is too low, it has little effect; but if it’s too high then it can cause
oscillation.

Differential gain

If Kp is the gain due to the present value of δ and Ki is the gain due to the
past value of δ, Kd is the gain due to the future value of δ.

Ud = Kd
dδ

dt

By looking at the time rate of change in δ, Kd allows the system to correct
for rapidly-changing values before they cause overshoot and oscillation.

The disadvantage of Kd is noise sensitivity: high-frequency noise in δ has
a large derivative, so large values of Kd can cause noise-induced oscillation.

PID

PID stands for Proportional, Integral, Differential control.

U = Up + Ui + Ud

With appropriately-chosen values of Kp, Ki, and Kd the PID controller
can bring the system to the setpoint quickly and hold it at that value with
minimal variation.

The traditional way of doing a PID controller is to use a set of 4 op-
amps: one each for proportional, integral, and differential gain, with the
fourth configured as a summing amplifier so that the output is the sum of
the P, I, and D, components. For high-speed applications, this may still be
the best way of building a controller. For the relatively low speeds required
for thermal control, however, it may be more convenient to use a digital

2



implementation of the PID algorithm. In the digital case, we replace the
integral with a sum and the derivative with a difference:

Uj = Kpδj +Ki

j∑
`=0

δ`∆t+Kd
δj − δj−1

∆t

We can use the same idea to express the previous value of U :

Uj−1 = Kpδj−1 +Ki

(
j∑

`=0

δ`∆t− δj∆t

)
+Kd

δj−1 − δj−2
∆t

We can then use Euler’s method to approximate the next value of U :

Uj+1 = Uj +
dU

dt
∆t ≈ Uj +

(
Uj − Uj−1

∆t

)
∆t

= . . .

= Uj +

(
Kp +Ki∆t+

Kd

∆t

)
δj +

(
−Kp − 2

Kd

∆t

)
δj−1 +

(
Kd

∆t

)
δj−2

This trick allows us to manage a digital PID efficiently without keeping
track of all previous values of δ, as long as the values of δ are measured at
a constant time interval ∆t.

Apparatus

Our apparatus for this exercise consists of three main components:

Temperature block and heat sink The small aluminum rectangle on the
top of this component is the one for which we will be controlling the
temperature. A small thermistor is embedded in this block at the
blue/white wire, which should be attached to the thermistor driver.
Between this block and the main heat sink there is a Peltier device:
this device converts current to a difference in temperature. Current
one way will pump heat from top to bottom, reversing the direction
of current reverses the direction of the heat pump. This Peltier de-
vice should be driven with an external bipolar power supply via the
Voltage-Controlled Bidirectional Current Driver circuit.

Thermistor driver The thermistor driver box provides a constant current
to the thermistor which measures the temperature of the aluminum
block. The output of the driver box is the resulting voltage across

3



the thermistor. If you send this output to LabVIEW as an “Iex ther-
mistor”, with the appropriate {A,B,C} values, LabVIEW will convert
directly to temperature.

A = 1.11253× 10−3

B = 2.34711× 10−4

C = 8.56943× 10−8

I = 100µA

Current amplifier The output current capacity of a LabVIEW board is
insufficient to drive the Peltier device directly. We need a current-
amplifier circuit: one that takes the voltage from a high-Z input and
converts it to the same voltage at low Z. The circuit shown in figure 1
will do the job: take the time to figure out how it works, because it’s
a pretty useful technique. The portion of the circuit that is outlined
with a dashed line is built for you already on the black heatsink.

Blue Transistor base input
Red +V input (8V 2A max)
Orange, White Peltier (red) input
Black -V input (-8V, 2A max)
Grey Ground

Experiment

Write a LabVIEW program that allows you to control the temperature of the
aluminum block. The program should have a slider control that allows the
user to set the temperature. It should also display the actual temperature,
preferably in graphical form so one can see how it behaves over time.

You may be tempted to do this with an Arduino rather than LabVIEW.
This is also acceptable, but keep in mind that the analog output for Arduino
is a one-sided PWM output and the current driver circuit requires a bipolar
analog signal so that it can drive the current smoothly in either direction.
It’s not impossible to control it with a microcontroller, but you’ll need a
bipolar DAC circuit between the Arduino and the current driver.

4



TIP120

TIP125

4703

4
1

5
2

Peltier

Input V

+V

-V

Figure 1: Voltage-Controlled Bidirectional Current Driver

5


