
Acoustic Bandgap

The Kronig-Penney model for electron wavefunctions in a crystal predicts
that there will be “gaps” in the energy: energy regions for which there
are no solutions to the Schrödinger equation.[3, 467–470] For very similar
reasons, there are forbidden frequency regions in the resonance spectra of
a corrugated tube. We will use a tube with an internal arrangement of
regularly-spaced baffles to investigate the behavior of waves in a periodic
lattice. By measuring the resonances as we scan the driving frequency in
the tube, we can determine the angular frequencies of the waves allowed
in the tube. We can also observe the forbidden region, where there are no
allowed resonant frequencies.[1] [2]

Experimental Procedure

1. Begin by writing a LabVIEW program to generate a variable frequency
and record the signal amplitude at both ends of the tube for each
frequency. It’s easiest to do this using the ElvisMX function generator
routine for the generation and an Express VI for data collection. Set up
the VI to record several thousand samples of input voltage at at least
20 kHz for each frequency. There are built-in routines in LabVIEW
(look in Signal Analysis tools) that can tell you the amplitude of a
periodic data set. Your program should measure sound amplitude
over a range of 10 Hz to 2 kHz at minimum.

2. In addition to the tube resonances we actually care about, there are
several other resonances in the system that affect our results. Both the
speaker output and the microphone sensitivity depend on frequency.
In addition, there is room noise to contend with. These problems can
be minimized by looking not at the signal from one microphone but
at the ratio of the signals from both microphones. This gives us the
“transmission coefficient” of the tube, if you will. Make sure your
LabVIEW program — or data analysis — takes this into account.

3. The gain of the microphone amplifiers can be set quite high. It’s easy
to set the gain too high, in fact. If you look at the microphone signals
on an oscilloscope, you may see “clipping” of the signal, where the
limited amplifier output prevents the signal from reaching the values it
should so the sinusoidal sound wave gets squared off. This clipping will
thoroughly mess up your results, so sweep your sound source through
a range of frequencies and turn the microphone gain down as needed so
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that clipping does not occur at any frequency of interest. You can also
use a BNC ‘T’ connector to send the microphone signal to an external
oscilloscope in addition to the ELVIS II interface, which allows you to
watch for clipping during the frequency sweep. Once you’re satisfied
that the gains are set correctly, move on to the next step.

4. Measure frequency response of the bare tube first. (This tube is of
smaller outer diameter than the corrugated tubes: the inner diameter,
though, is the same as the inner diameter of the spacers in the corru-
gated tubes.) Plot the response of the tube as a function of frequency.

5. Calculate the wavelength λ of each resonance in the tube, using the
frequency, tube length, and anything you might remember from your
introductory physics courses. Consideration of question 1 might be
worthwhile at this point!

6. Calculate the wavenumber k = 2π/λ for each resonance mode, and
make a plot of angular frequency ω versus k.

7. Next, measure the frequency response of the tube with the evenly-
spaced baffles. At low frequencies, the resonances will be nearly the
same as for the bare tube, but the resonance frequencies change re-
markably after the first few. Using the same technique as in steps 4–6,
calculate and graph ω versus k for this tube. (You may assume that
each successive peak represents the next possible bare-tube-type mode
for the purpose of calculating wavelength.) Overlay your graph on the
bare-tube graph for comparison.

8. Make a qualitative comparison to the plot of energy versus k in Tipler
(or other text dealing with semiconductor physics.)

9. There is a third tube available: it’s nearly identical to the tube with
evenly-spaced baffles, but one baffle is missing. Compare the frequency-
response graphs for the two corrugated tubes, and qualitatively relate
the results to topics discussed in class. If possible, compare the ω-k
graphs for the two corrugated tubes as well.

Questions

1. In introductory physics texts, much ado is made of tubes open at one
end versus tubes open at both ends. Is the bare tube (part 4) open at
one end or at both ends? This is not a trivial question: look closely at

2



the relative position of the first few resonance modes and justify your
answer.

2. What, if anything, can one deduce from the slope of the plot of ω
versus k for the bare tube?

3. Does the speed of sound depend on frequency in any of these tubes?
Explain.

4. In a higher-level solid-state physics course one would learn that the
first band gap should occur at k = π/a, where a is the lattice constant
of the crystal. Compare and contrast your results with this prediction.
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