cated harmonic oscillator potential of the same range pro-
vides a convenient and instructive example of a quantum
mechanical system for which exact bound-state and posi-
tive-energy solutions may be obtained in closed form. In a
pedagogical study of tunneling, the model provides a
graphical example of the way in which the positive-energy
components of a wave packet “leak” through the barrier,
leaving the bound-state component behind. Finally, an in-
terference between the bound and continuum states is
shown to underlie oscillatory variations in the probability
of the particle being found inside the potential barrier.

'Abraham Goldberg, Harry M. Schey, and Judah L. Schwartz, “Com-
puter-generated motion pictures of one-dimensional quantum-mechani-
cal transmisston and reflection phenomena,” Am. J. Phys. 35, 177-186
(1967).

2L. 1. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1968), 3rd
ed., pp. 104-109.

3E. Merzbacher, Quantum Mechanics (Wiley, New York, 1970), 2nd
ed., pp. 110-114.

D. S. Saxon, Elementary Quantum Mechanics (Holden-Day, San Fran-
cisco, 1968), pp. 155-166.

3A cutoff harmonic oscillator potential was used as an example in obtain-
ing a numerical solution of the one-dimensional Schrddinger equation.
C. K. Manka, “More on numerical solutions to simple one-dimensional
Schrédinger equations,” Am. J. Phys. 40, 1539-1541 (1972).

®A three-dimensional truncated harmonic oscillator potential without a
barrier was used in a discussion of nuclear shell structure. M.G. Mayer
and J. H. D. Jensen, Elementary Theory of Nuclear Shell Structure (Wi-
ley, New York, 1957}, p. 52.

"Reference 3, pp. 54-56.

8The quantity |1 — e |? is called the “scattering coefficient.” Reference
3,p 114

Reference 3, pp. 86-87.

'"Reference 3, pp. 47-48, 154-156.

The effects of coefficient of restitution variations on long fly balls
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The coefficient of restitution of major league baseballs is required to be 0.546 + 0.032. These
allowed variations affect the launch velocity and ultimately the range of fly balls. The variations in
the range for well-hit balls are calculated here to be on the order of 15 ft. These calculations
provide an interesting collection of mechanics problems that might be of interest for

undergraduate students.

L INTRODUCTION

The coefficient of restitution for a collision is the ratio of
the final relative velocity to the initial relative velocity of
the colliding objects. The coefficient of restitution of a ma-
jor league baseball is required to be 0.546 + 0.032."2 The
question raised here is how will the allowed variations in
the coefficient of restitution affect the distance traveled by
a well-hit ball?

The first step toward the answer is to find the effect of
coefficient of restitution variations on the velocity of the
ball as it leaves the bat, referred to here as the launch veloc-
ity. Next, the range for a baseball as a function of the
launch velocity must be studied. To keep some resem-
blance to reality, air resistance must be included. Finally,
the two results can be put together to find the variations in
the range due to fluctuations in the coefficient of restitu-
tion. Since the interest here is just the variations in the
range, as opposed to the values of the range, and because it
is often easier and frequently more accurate to calculate
variations, as opposed to the actual values themselves, only
the variations will be found.
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II. THE VARIATION OF THE LAUNCH
VELOCITY WITH THE COEFFICIENT OF
RESTITUTION

The collision viewed from a coordinate system moving
with the center of mass of the bat at the moment just before
impact is shown in Fig. 1. According to the standard as-
sumptions, the bat can be treated as a free body.’ The equa-
tions needed to describe the ball-bat collision come from
the conservation of linear momentum, the conservation of
angular momentum, and the definition of the coefficient of
restitution. These equations are

mvy = MV — mu, (N
Iy — myob = I + mub, 2)
e= W+ V—owb)/(vy,+ wb), (3)

where m is the mass of the ball, M is the mass of the bat, 7 is
the moment of inertia of the bat about the center of mass, v,
and v are the initial and final velocities of the ball, ¥ is the
final velocity of the center of mass of the bat, w, and w are
the initial and final angular velocities of the bat, b is the
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before after

Fig. 1. The ball-bat collision viewed from a coordinate system moving
with the center of mass of the bat at the moment just before impact.

distance between the center of mass of the bat and the point
where the ball collides, and, finally, e is the coefficient of
restitution. Equations (1), (2), and (3) assume that all the
motion is happening in a plane, which is only approximate-
ly correct.

Eliminating ¥ and @ and solving for the final velocity of
the ball gives

v= [Iwb(1 + e) — mb2v, — Iv,(m/M —e)]
X [mb?+I(1+m/M)1~". 4

This is the launch velocity of the ball in the c.m. frame.
Equation (4) can be differentiated to find the variation of
the launch velocity of the ball with the coefficient of restitu-
tion,

dv _ Wb + v,

de mb¥/I+ (1+m/M)’

Using some typical values such as m=~0.15 kg, M=~ 1.0
kg, b<0.10 m, vy=50 m/s, w,~10 rad/s, and 7=0.05
kg m?, the terms in Eq. (5) are found to be on the order of

(3)

woh=1m/s,
vo=50 m/s,
mb?/1~0.03,
1+m/M=1.2.

Table I. The range in meters for a baseball calculated for various angles
and launch speeds in meters per second. The calculations were done using
a= —g— cvv, where c =0.0050m™".

v 30° 35° 40° 45° 50° 55° 60°

30 63.248 67.018 69.327 68.712 66.800 63.535 57.895
35 79.982 83.443 86.893 85.379 83.716 79.050 72.788
40 97.342 102.185 103.210 102.367 99.582 94.779 86.862
45 112,931 119.295 121.277 119.388 115.409 109.254 99.814

50  130.664 134.463 137.533 134.708 131.006 123.475 112.517
55  146.189 151.331 151.832 149.722 144.918 136.167 124.870
60  161.502 166.018 167.476 164.353 158.428 148.463 135.827
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Fig. 2. Range versus launch speed for 45° including the least-squares-fit
line.

The point is that the first term in the numerator and the
first term in the denominator of Eq. (5) can both be ne-
glected, leaving the result

v_ v

de 14+m/M
It is interesting to note that this is the same result as for the
collision of two billiard balls. This is due to the fact that the
collisions where the ball is well hit occur near the center of
mass of the bat.

It is easiest to transform out of the c.m. frame and into
the “home plate” frame at this point. The variation of the
launch velocity with the coefficient of restitution is now
given by

do_ Yol
de 1+m/M’

where v is now the launch velocity, v, is the speed of the
center of mass of the bat, and v, is now the speed of the
pitch. It will be assumed that Eq. (7) is valid even when the
ball is launched at an angle.

(6)

(7

II1. THE RANGE AS A FUNCTION OF THE
LAUNCH VELOCITY

The range of a projectile in the absence of air resistance is
given by

R = (v*sin 26)/g.

However, air resistance cannot be neglected in the flight of
baseballs. Assuming that the air resistance is proportional
to the velocity squared, the components of the acceleration
of the ball can be written as

a, = — cov,,

a, = —g—cw,,

where g is the acceleration due to gravity, v is the speed of
the ball, v, and v, are the horizontal and vertical compo-
nents of the velocity of the ball, and ¢ is the drag factor.
Using the value ¢ = 0.0050/m given by Brancazio,® the
range of the ball for various launch speeds and firing angles
was calculated numerically (e.g., see Swartz).’ The results
are summarized in Table 1. Notice that the maximum
range does not occur at the 45° from the no-air resistance
case, butis closer to 40°. This is consistent with the idea that
the air resistance causes a projectile to “run out of gas” and
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“drop like a rock.” That is why outfiedlers are taught to get
‘“‘under the ball.”

Figure 2 is a typical plot of the range versus the launch
speed for a given launch angle. The slope of the curve gen-
erated by these points is the variation of the range with the
launch speed. The calculated points are remarkably close
to a straight line. While least-squares fitting is usually re-
served for fitting data, as opposed to calculated points, it
provides a convenient method for finding the slope. Note
that the points do not form a straight line exactly. They are
above the line in the middle and below at the extremes.

Table II contains the least-squares fit values of the slopes
as well as the correlation coefficients for the fits. The slopes
vary from 2.60 to 3.32 s with the angle while the correlation
coefficients are surprisingly high considering that the
range of launch speeds covers a factor of 2.

IV. THE VARIATIONS IN RANGE DUE TO
FLUCTUATIONS IN THE COEFFICIENT OF
RESTITUTION

The variations in the range due to the fluctuations in the
coefficient of restitution can now be found in a straightfor-
ward manner,

IR _(dR),(ds) )
de dv/ \de

While the calculation indicated by Eq. (8) can be repeated
for many combinations of pitch speed, bat speed, and
launch angle, it is more instructive just to use some typical

values to get an idea of the size of the effect. Using an aver- .

age value of 3 s for the variation of the range with the
launch speed and the variation of the launch speed due to
the coefficient of restitution from Eq. (7) yields
ﬂ~(3s)~ Yo + .
de 14+m/M
Typical values of v, + v, ~60 m/s, m=0.15 kg, and
M =1.0 kg give a value of

E15:160 m,

de

)

The value allowed by major league baseball of de = 0.032
results in range variations of

dR=5.1m~17 ft!
This is about equal to the width of the warning track.

Table II. The least-squares-fit slopes for the range versus launch speed
plots at various angles.

Launch dR Correlation
Slope = — .

angle dv coefficient 7
30° 3.29s 1.000
35° 3.32s 0.999
40° 3.28s 0.999
45° 3.20s 0.999
50° 3.06s 0.999
55° 2.84s 0.998
60° 2.60s 0.998
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V. CONCLUSIONS

These results bring up some interesting (if meaningless)
questions. Is the difference between a warning track out
and a home run really influenced by slight variations in the
baseball? Is there a way that a pitcher can tell before he
throws a pitch if he has a live or a dead ball? Could Dennis
Eckersley have thrown Kirk Gibson, in the vernacular of
baseball, “a good ball to hit™?

In all seriousness, the physics problem described hereis a
good fraction of an upper division undergraduate mechan-
ics course. Its solution involves rotational collisions, the
application of the conservation laws for angular and linear
momentum, the concept of the coefficient of restitution,
transformations to and from center-of-mass coordinates,
projectile motion including air resistance, numerical analy-
sis of motion, least-squares fitting, and, perhaps most im-
portantly, it produces interesting results!
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APPENDIX

It is appropriate to make some comments on the limita-
tions of the model presented here. The value of the coeffi-
cient of restitution specified by the major leagues is pre-
scribed to be measured by firing a ball at 85 ft/s (=56
mph~26 m/s) at a wall of ash, the material of which the
bats are constructed. The value of the coefficient of restitu-
tion is then the ratio of the rebound to incident velocities.?
This value may be different from the value in a ball-bat
collision due to several factors. First, the bat may absorb
energy differently than the wall of ash (for example, by
vibrating). Second, the actual relative velocities during the
collisions discussed here are much higher than 26 m/s. The
coefficient of restitution of a baseball is known to vary with
impact velocities.® In general, the higher the impact veloc-
ity the lower the coefficient of restitution. Third, the toler-
ance in the coeflicient of restitution of + 0.032 is not nec-
essarily a manufacturing tolerance. That is, the variations
from ball to ball may actually be much smaller than this.

Approximations have also been made in describing the
flight of the ball. The drag factor for a baseball is not well
known. In addition, and perhaps more importantly, it has
been suggested that the drag factor varies dramatically
during the flight as the air passing the ball changes from
partially turbulent flow to fully turbulent flow and back.”®
Also, the spin imparted to the ball during the collision has a
substantial effect on the range.®

In summary, the answers to the equations raised in the
conclusion are “probably not,” “almost certainly not,” and
“definitely not, the baby cleared the fence by 25 ft!”
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A short proof of the generalized Helmholtz theorem
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By making use of the Stokes operator and its corresponding dual operator, which are introduced
here, a short proof of the Helmholtz theorem for antisymmetric second-rank tensor fields in

Minkowski space-time is presented.

One of the most straightforward theoretical presenta-
tions of Maxwell’s equations is based on the Helmholtz
theorem for antisymmetric second-rank tensor fields in
Minkowski space-time (M*).'~> Kobe? has given the fol-
lowing formulation for this generalized Helmholtz
theorem: An antisymmetric second-rank tensor field in M*
that vanishes at spatial infinity is completely determined by
specifying its divergence and the divergence of its dual. In
particular, if F#¥ (x) is an antisymmetric second-rank ten-
sor field* that vanishes at spatial infinity and if its diver-
gence d, F'*" is specified to be the charge-current density
four-vector (times 47/c), and the divergence of its dual
a;; F# vanishes everywhere in M#*, then F*¥ (x) is com-
pletely determined and it is the electromagnetic field ten-
sor, i.e. Maxwell’s equations are obtained. The purpose of
this article is to present an alternative proof of the general-
ized Helmholtz theorem® that is shorter than the proof giv-
en by Kobe.?

A useful operator for stating the generalized Helmholtz
theorem is introduced here. It is the Stokes operator or
Stokian d4%, which is antisymmetric in ¢ and v, and is
defined as

gLy =468y a* — 84" (1)

The operator *d4*, antisymmetric in u and v, dual to 34~
is defined as

*aﬁv:%euvaﬂaaﬁ/“ (2)

where €**# is the completely antisymmetric Levi-Civita
tensor with €°!?* = 1. The operator *3%" has the following
properties: '

*[*a/:lw]: __a;/;v (3)
and
o, [*3%] =0. 4

Now, the generalized Helmholtz theorem may be stated
as follows: An antisymmetric second-rank C '-tensor field®
F#¥(x) in M* that vanishes at spatial infinity can be ex-
pressed as®

FH(x) = g4’ — %34 B, (5)
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where 4% (x) is a four-vector of class C? in M* that is de-
fined as

A4 =8,Z, (6)

and B*(x) is another independent four-vector of class C>
in M* that is defined as

Bi=3xZ. €
The tensor Z **(x) in Eq. (6) is an arbitrary antisymme-
tric second-rank C *-tensor field in M* that vanishes at spa-
tial infinity, and the tensor *Z “*(x) in Eq. (7) isits corre-
sponding dual, which is defined as

*Z W (x) = 4" PZ 5 (x). (8)

The proof of Eq. (5) follows directly from the tensor
identity

0y 0°Z* =94 [3,Z°" | —*I%[I%*Z*]. (9

This identity is proved in the Appendix. In fact, if the ten-
sor field F#¥(x) is taken to be

F*(x)=4d,d%Z", (10)
then the substitution of Egs. (6), (7), and (10) into Eq.
(9) leads to the expression (5) for the tensor field F/#"(x).
Thus the generalized Helmholtz theorem shows that the
tensor field F#*(x) can be resolved into the sum of the
Stokian of a four-vector and the dual of the Stokian of an-
other independent four-vector.

A corollary of the generalized Helmholtz theorem states
that the tensor field F#*(x) is determined by specifying its
divergence d, F** and the divergence of its dual d§ F**
everywhere in M*. The proof of this corollary is straightfor-
ward. The divergence of Eq. (5) leads to the equation

8,3"4%—3%3,4"=9,F". (11)

This result has been obtained by making use of the identity
(4). Now, from Eq. (6), it follows that d,4* =0 and
hence Eq. (11) reduces to the d’Alembert equation

d,d%4"=4d,F". (12)
Specifying d, F**in M? and imposing the condition that 4"
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