Using PITCHf/x to Teach Physics

Paul Robinson
San Mateo High School
David Kagan
California State University, Chico

Typical Physics Problem

A football is kicked with an initial velocity of $25 \mathrm{~m} / \mathrm{s}$ at an angle of 45-degrees with the horizontal. Determine the time of flight, the horizontal displacement, and the peak height of the football.

A Better Physics Problem

A Better Physics Problem

Not Just a Slugger...

A Better Physics Problem

Get the pitch data from mlb

No.	Quantity	Value	Units	Description
1	des.	In play, run(s)		A comment on the action resulting from the pitch.
2	txpe	X		$\mathrm{B}=$ ball, $\mathrm{S}=$ strike, $\mathrm{X}=$ in play
3	14.	371		Code indicating pitch number
4	$x=$	112.45	pixels	x -pixel at home plate
5	$\mathrm{x}=$	131.24	pixels	z-pixel at home plate (yes, it is z)
6	start speed,	84.1	mph	Speed at $\mathrm{y} 0=50 \mathrm{ft}$
7	end speed	77.2	mph	Speed at the front of home plate $\mathrm{y}=1.417 \mathrm{ft}$
8	SZator.	3.836	ft	The z-value of the top of the strike zone as estimated by a technician
9	Szubot	1.79	ft	The z-value of the bottom of the strike zone as estimated by a technician
10	pfx x	8.68	in	A measure of the "break" of the pitch in the xdirection.
11	pfx $z^{\text {a }}$	9.55	in	A measure of the "break" of the pitch in the zdirection.
12	DX	-0.012	ft	Measured x-value of position at the front of home plate ($\mathrm{y}=1.417 \mathrm{ft}$)
13	DZ.	2.743	ft	Measured z-value of position at the front of home plate ($\mathrm{y}=1.417 \mathrm{ft}$)
14	x0	1.664	$\mathrm{ft}^{\text {f }}$	x-position at $\mathrm{y}=50 \mathrm{ft}$
15	x0	50.0	ft	Arbitrary fixed initial y -value
16	20	6.597	ft	z-position at $y=50 \mathrm{ft}$
17	xx0.	-6.791	fts	x -velocity at $\mathrm{y}=50 \mathrm{ft}$
18	xx0.	-123.055	fts	y -velocity at $\mathrm{y}=50 \mathrm{ft}$
19	KzO.	-5.721	fts	z -velocity at $\mathrm{y}=50 \mathrm{ft}$
20	ax	13.233	ft/s/s	x-acceleration at $\mathrm{y}=50 \mathrm{ft}$ assumed constant.
21	2 z	25.802	$\mathrm{ft} / \mathrm{s} / \mathrm{s}$	y -acceleration at $\mathrm{y}=50 \mathrm{ft}$ assumed constant.
22	az.	-17.540	$\mathrm{ft} / \mathrm{s} / \mathrm{s}$	z -acceleration at $\mathrm{y}=50 \mathrm{ft}$ assumed constant.
23	break y ,	25.2	ft	Another measure of the "break."
24	break angle	-32.1	deg	Another measure of the "break."
25	break length	5.9	in	Another measure of the "break."

A Better Physics Problem

Problem 1: Find the initial speed of the ball (at $y=50.0 \mathrm{ft}$) in mph .
In 3-dimensions the initial speed is the magnitude of the initial

$$
v_{o}=\sqrt{v_{o x}^{2}+v_{o y}^{2}+v_{o z}^{2}}
$$ velocity vector. Since the components are listed below we

$$
\begin{gathered}
v_{o}=\sqrt{(-6.791)^{2}+(-123.055)^{2}+(-5.721)^{2}} \\
v_{o}=123.375 \mathrm{ft} / \mathrm{s}=84.1 \mathrm{mph}
\end{gathered}
$$ take the square root of the sum of their squares,

5	$\mathrm{V}=$		nixel	z-pixel at home plate (yes, it is z)
6	start speed	84.1	mph	Speed at y0 $=50 \mathrm{ft}$
7	sed snoed	77.2	IMD	Speed at the front of home plate $\mathrm{y}=1.417 \mathrm{ft}$
8	s7 ton	3.836	ft	The zevalue of the tonof the strike zone as

$x_{0}=1.664 \mathrm{ft}$	$v_{x o}=-6.791 \mathrm{ft} / \mathrm{s}$	$a_{x}=13.233 \mathrm{ft} / \mathrm{s}^{2}$
$y_{0}=50.00 \mathrm{ft}$	$v_{\mathrm{yo}}=-123.055 \mathrm{ft} / \mathrm{s}$	$a_{y}=25.802 \mathrm{ft} / \mathrm{s}^{2}$
$z_{\mathrm{o}}=6.597 \mathrm{ft}$	$v_{\mathrm{zo}}=-5.721 \mathrm{ft} / \mathrm{s}$	$a_{z}=-17.540 \mathrm{ft} / \mathrm{s}^{2}$

A Better Physics Problem

Problem 2: Find the components of the final velocity of the pitch when it reaches the front of home plate $(y=1.417 f t)$.

Since we know the initial and final y-values we can get the y component of the velocity using

$$
\begin{aligned}
& v_{y}^{2}=v_{o y}^{2}+2 a_{y}\left(y-y_{o}\right) \\
& v_{y}=-\sqrt{v_{o y}^{2}+2 a_{y}\left(y-y_{o}\right)}
\end{aligned}
$$ the kinematic equation,

$$
\begin{gathered}
v_{y}=-\sqrt{(-123.055)^{2}+2(25.802)(1.417-50.00)} \\
v_{y}=-112.408 \mathrm{ft} / \mathrm{s}
\end{gathered}
$$

$x_{0}=1.664 \mathrm{ft}$	$\mathrm{v}_{\mathrm{xo}}=-6.791 \mathrm{ft} / \mathrm{s}$	$\mathrm{a}_{\mathrm{x}}=13.233 \mathrm{ft} / \mathrm{s}^{2}$			
$\mathrm{y}_{\mathrm{o}}=50.00 \mathrm{ft}$	$\mathrm{v}_{\mathrm{yo}}=-123.055 \mathrm{ft} / \mathrm{s}$	$\mathrm{a}_{\mathrm{y}}=25.802 \mathrm{ft} / \mathrm{s}^{2}$	$\mathrm{v}_{\mathrm{x}}=?$		
$\mathrm{z}_{\mathrm{o}}=6.597 \mathrm{ft}$	$\mathrm{v}_{\mathrm{zo}}=-5.721 \mathrm{ft} / \mathrm{s}$	$\mathrm{a}_{\mathrm{z}}=-17.540 \mathrm{ft} / \mathrm{s}^{2}$		\quad	$\mathrm{v}_{\mathrm{y}}=-112.408 \mathrm{ft} / \mathrm{s}$
:---					
$v_{\mathrm{z}}=?$					

A Better Physics Problem

Problem 2: Find the components of the final velocity of the pitch when it reaches the front of home plate $(y=1.417 f t)$.

The time of flight must be found to get the other velocity

$$
\begin{array}{r}
v_{y}=v_{o y}+a_{y} t \\
t=\frac{v_{y}-v_{o y}}{a_{y}} \\
t=\frac{-112.408-(-123.055)}{25.802} \\
t=0.4127 s
\end{array}
$$

$\mathrm{x}_{\mathrm{o}}=1.664 \mathrm{ft}$ $\mathrm{y}_{\mathrm{o}}=50.00 \mathrm{ft}$	$\mathrm{v}_{\mathrm{xo}}=-6.791 \mathrm{ft} / \mathrm{s}$	$\mathrm{a}_{\mathrm{x}}=13.233 \mathrm{ft} / \mathrm{s}^{2}$		
$\mathrm{z}_{\mathrm{o}}=6.597 \mathrm{ft}$	$\mathrm{v}_{\mathrm{zo}}=-5.723 .055 \mathrm{ft} / \mathrm{s}$	$\mathrm{a}_{\mathrm{y}}=25.802 \mathrm{ft} / \mathrm{s}^{2}$	\quad	$\mathrm{v}_{\mathrm{x}}=?$
:---				
$\mathrm{v}_{\mathrm{y}}=-112.408 \mathrm{ft} / \mathrm{s}$				

A Better Physics Problem

Problem 2: Find the components of the final velocity of the pitch when it reaches the front of home plate ($y=1.417 \mathrm{ft}$).

Having the time of flight and using kinematic equations for the other two axes,

$$
\begin{array}{r}
v_{x}=v_{o x}+a_{x} t=-6.791+(13.233)(0.4127)=-1.330 \mathrm{ft} / \mathrm{s} \\
v_{z}=v_{o z}+a_{z} t=-5.721+(-17.540)(0.4127)=-12.960 \mathrm{ft} / \mathrm{s} \\
t=0.4127 \mathrm{~s}
\end{array}
$$

$\mathrm{x}_{\mathrm{o}}=1.664 \mathrm{ft}$	$\mathrm{v}_{\mathrm{xo}}=-6.791 \mathrm{ft} / \mathrm{s}$	$\mathrm{a}_{\mathrm{x}}=13.233 \mathrm{ft} / \mathrm{s}^{2}$	$\mathrm{v}_{\mathrm{x}}=$? $1.330 \mathrm{ft} / \mathrm{s}$
$\mathrm{y}_{0}=50.00 \mathrm{ft}$	$v_{y_{0}}=-123.055 \mathrm{ft} / \mathrm{s}$	$\mathrm{a}_{\mathrm{y}}=25.802 \mathrm{ft} / \mathrm{s}^{2}$	$v_{y}=-112.408 \mathrm{ft} / \mathrm{s}$
$z_{\mathrm{o}}=6.597 \mathrm{ft}$	$\mathrm{v}_{\mathrm{zo}}=-5.721 \mathrm{ft} / \mathrm{s}$	$\mathrm{a}_{\mathrm{z}}=-17.540 \mathrm{ft} / \mathrm{s}^{2}$	$\mathrm{v}_{\mathrm{z}}=$? $12.960 \mathrm{ft} / \mathrm{s}$

A Better Physics Problem

Problem 2: Find the components of the final velocity of the pitch when it reaches the front of home plate $(y=1.417 f t)$.

The final speed is the magnitude

$$
v=\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}}
$$ of the final velocity vector. Taking the square root of the sum of the squares,

$$
\begin{aligned}
& v=\sqrt{(-1.330)^{2}+(-112.408)^{2}+(-12.960)^{2}} \\
& v=113.160 \mathrm{ft} / \mathrm{s}=77.2 \mathrm{mph}
\end{aligned}
$$

5	$y=$	131.24	Dixels	z-pixel at home plate (yes, it is z)
6	stat speed	84.1	IDP只	Speed at $\mathrm{y} 0=50 \mathrm{ft}$
7	end speed	77.2	mph	Speed at the front of home plate $\mathrm{y}=1.417 \mathrm{ft}$
8	57 IOP	3.076	ft	The z-value of the tonof the strilep zone as

$\mathrm{t}=0.4127 \mathrm{~s}$

$x_{0}=1.664 \mathrm{ft}$	$v_{\mathrm{xo}}=-6.791 \mathrm{ft} / \mathrm{s}$	$\mathrm{a}_{\mathrm{x}}=13.233 \mathrm{ft} / \mathrm{s}^{2}$		
$\mathrm{y}_{\mathrm{o}}=50.00 \mathrm{ft}$	$\mathrm{v}_{\mathrm{yo}}=-123.055 \mathrm{ft} / \mathrm{s}$	$\mathrm{a}_{\mathrm{y}}=25.802 \mathrm{ft} / \mathrm{s}^{2}$		
$\mathrm{z}_{\mathrm{o}}=6.597 \mathrm{ft}$	$v_{\mathrm{zo}}=-5.721 \mathrm{ft} / \mathrm{s}$	$a_{\mathrm{z}}=-17.540 \mathrm{ft} / \mathrm{s}^{2}$	\quad	$\mathrm{v}_{\mathrm{x}}=-1.330 \mathrm{ft} / \mathrm{s}$
:---				
$\mathrm{v}_{\mathrm{y}}=-112.408 \mathrm{ft} / \mathrm{s}$				
$v_{\mathrm{z}}=-12.960 \mathrm{ft} / \mathrm{s}$				

A Better Physics Problem

Problem 3:Since a typical batter doesn't get a sense of the motion of the pitch until the ball is about 40ft away from home plate, find the time to get there and the x and z components of the position and velocity when it arrives.

The time can be found using the

$$
y=y_{o}+v_{o y} t_{40}+\frac{1}{2} a_{y} t_{40}^{2}
$$ kinematic equation,

$$
\mathrm{t}=0.4127 \mathrm{~s}
$$

$$
\begin{array}{|lll|}
\hline \mathrm{x}_{\mathrm{o}}=1.664 \mathrm{ft} & \mathrm{v}_{\mathrm{xo}}=-6.791 \mathrm{ft} / \mathrm{s} & \mathrm{a}_{\mathrm{x}}=13.233 \mathrm{ft} / \mathrm{s}^{2} \\
\mathrm{y}_{\mathrm{o}}=50.00 \mathrm{ft} & v_{\mathrm{yo}}=-123.055 \mathrm{ft} / \mathrm{s} & a_{\mathrm{y}}=25.802 \mathrm{ft} / \mathrm{s}^{2} \\
\mathrm{z}_{\mathrm{o}}=6.597 \mathrm{ft} & v_{\mathrm{zo}}=-5.721 \mathrm{ft} / \mathrm{s} & a_{\mathrm{z}}=-17.540 \mathrm{ft} / \mathrm{s}^{2} \\
\hline
\end{array}
$$

$$
\begin{aligned}
& t_{40}=\frac{-v_{o y} \pm \sqrt{v_{o y}^{2}-2 a_{y}\left(y_{o}-y\right)}}{a_{y}} \\
& t_{40}=\frac{-(-123.055)-\sqrt{(-123.055)^{2}-2(25.802)(50-40)}}{(25.802)}=0.08197 \mathrm{~s} \\
& t_{40}=0.08197 s \\
& \begin{array}{l}
\mathrm{t}_{40}=0.08197 \mathrm{~s} \\
\mathrm{x}_{40}=? \\
\mathrm{v}_{\mathrm{x} 40}=? \\
\mathrm{z}_{40}=? \\
\mathrm{v}_{\mathrm{z} 40}=?
\end{array}
\end{aligned}
$$

A Better Physics Problem

Problem 3: Since a typical batter doesn't get a sense of the motion of the pitch until the ball is about 40ft away from home plate, find the time to get there and the x and z components of the position and velocity when it arrives.

The x-position and velocity can now be found,

$$
\begin{aligned}
& x_{40}=x_{o}+v_{o x} t_{40}+\frac{1}{2} a_{x} t_{40}^{2}=1.664+(-6.791)(0.08197)+\frac{1}{2}(13.233)(0.08197)^{2}=1.152 f t \\
& v_{x 40}=v_{o x}+a_{x} t_{40}=-6.791+(13.233)(0.08197)=-5.706 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

as can the z-position and velocity,

$$
\begin{array}{lll}
z_{40}=z_{o}+v_{o z} t_{40}+\frac{1}{2} a_{z} t_{40}^{2}=6.597+(-5.721)(0.08197)+\frac{1}{2}(-17.540)(0.08197)^{2}=6.069 f t \\
v_{z 40}=v_{o z}+a_{z} t_{40}=-5.721+(-17.540)(0.08197)=-7.159 f t / s \\
& & \mathrm{t}_{40}=0.08197 \mathrm{~s} \\
\mathrm{t}=0.4127 \mathrm{~s} & & \mathrm{x}_{40}=9.152 \mathrm{ft} \\
\hline \mathrm{x}_{0}=1.664 \mathrm{ft} & \mathrm{v}_{\mathrm{xo}}=-6.791 \mathrm{ft} / \mathrm{s} & \mathrm{a}_{\mathrm{x}}=13.233 \mathrm{ft} / \mathrm{s}^{2}
\end{array} \mathrm{v}_{\mathrm{x} 40}=3.706 \mathrm{ft} / \mathrm{s} .
$$

A Better Physics Problem

Problem 4: Now that the batter has a sense of the position and velocity of the ball, he can begin to plan his swing. If the ball only felt gravity in the z direction and no force in the x-direction from this point on, where would it cross home plate.

The time of flight from $y=40 f t$ can be found from by subtracting the total time from the time to get to $\mathrm{y}=40 \mathrm{ft}$,

$$
t_{h}=t-t_{40}=0.4127-0.08197=0.3307 s
$$

$$
t=0.4127 \mathrm{~s} \quad t_{\mathrm{h}}=0.3307 \mathrm{~s}
$$

$x_{0}=1.664 \mathrm{ft}$	$v_{\mathrm{xo}}=-6.791 \mathrm{ft} / \mathrm{s}$	$a_{\mathrm{x}}=13.233 \mathrm{ft} / \mathrm{s}^{2}$
$y_{0}=50.00 \mathrm{ft}$	$v_{\mathrm{yo}}=-123.055 \mathrm{ft} / \mathrm{s}$	$a_{\mathrm{y}}=25.802 \mathrm{ft} / \mathrm{s}^{2}$
$\mathrm{z}_{\mathrm{o}}=6.597 \mathrm{ft}$	$v_{\mathrm{zo}}=-5.721 \mathrm{ft} / \mathrm{s}$	$a_{\mathrm{z}}=-17.540 \mathrm{ft} / \mathrm{s}^{2}$

$$
\begin{aligned}
& \mathrm{t}_{40}=0.08197 \mathrm{~s} \\
& \mathrm{x}_{40}=1.152 \mathrm{ft} \\
& \mathrm{v}_{\mathrm{x} 40}=-5.706 \mathrm{ft} / \mathrm{s} \\
& \mathrm{z}_{40}=6.069 \mathrm{ft} \\
& \mathrm{v}_{\mathrm{z} 40}=-7.159 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

A Better Physics Problem

Problem 4: Now that the batter has a sense of the position and velocity of the ball, he can begin to plan his swing. If the ball only felt gravity in the z direction and no force in the x-direction from this point on, where would it cross home plate.

Along the x -direction there would be no acceleration,

$$
x_{\text {noair }}=x_{40}+v_{x 40} t_{h}+\frac{1}{2} a_{x} t_{h}^{2} \Rightarrow x_{\text {noair }}=1.152+(-5.706)(0.3307)=-0.735 \mathrm{ft}
$$

Along the z -axis there would only be gravitational acceleration,

$$
\begin{aligned}
& z_{\text {noair }}=z_{40}+v_{z 40} t_{h}+\frac{1}{2} a_{z} t_{h}^{2} \\
& z_{\text {nooir }}=6.069+(-7.159)(0.3307)+\frac{1}{2}(-32.174)(0.3307)^{2}=1.942 f t \\
& t=0.4127 \mathrm{~s} \quad t_{\mathrm{h}}=0.3307 \mathrm{~s} \quad \mathrm{x}_{\text {noair }}=-0.735 \mathrm{ft} \quad \mathrm{z}_{\text {noair }}=1.942 \mathrm{ft} \\
& \mathrm{t}_{40}=0.08197 \mathrm{~s} \\
& \mathrm{x}_{40}=1.152 \mathrm{ft} \\
& x_{0}=1.664 \mathrm{ft} \quad v_{x 0}=-6.791 \mathrm{ft} / \mathrm{s} \quad a_{\mathrm{x}}=13.233 \mathrm{ft} / \mathrm{s}^{2} \\
& y_{0}=50.00 \mathrm{ft} \quad v_{y \mathrm{y}}=-123.055 \mathrm{ft} / \mathrm{s} \quad \mathrm{a}_{\mathrm{y}}=25.802 \mathrm{ft} / \mathrm{s}^{2} \\
& \mathrm{z}_{\mathrm{o}}=6.597 \mathrm{ft} \quad \mathrm{v}_{\mathrm{zo}}=-5.721 \mathrm{ft} / \mathrm{s} \quad \mathrm{a}_{\mathrm{z}}=-17.540 \mathrm{ft} / \mathrm{s}^{2} \\
& \begin{array}{l}
v_{x 40}=-5.706 \mathrm{ft} / \mathrm{s} \\
z_{40}=6.069 \mathrm{ft} \\
v_{z 40}=-7.159 \mathrm{ft} / \mathrm{s}
\end{array}
\end{aligned}
$$

A Better Physics Problem

Problem 5: Batters describe the effect of spin on the ball as the "break." One way to analytically define the break is the difference between where the ball actually arrives and where is would have arrived only feeling gravity. Find the break along the x and z directions.

The actual x and z positions are in the data table.

12	px	-0.012	f	Measured x -value of position at the front of home plate $(\mathrm{y}=1.417 \mathrm{ft})$
13	pz	2.743	ft	Measured z -value of position at the front of home plate $(\mathrm{y}=1.417 \mathrm{ft})$

\[

\]

A Better Physics Problem

Problem 5: Batters describe the effect of spin on the ball as the "break." One way to analytically define the break is the difference between where the ball actually arrives and where is would have arrived only feeling gravity. Find the break along the x and z directions.
This definition of break can now be calculated for the x and z directions.

$$
\begin{gathered}
x_{\text {break }}=p x-x_{\text {noair }}=-0.012-(-0.735)=0.723 f t=8.68 \text { in } \\
z_{\text {break }}=p z-z_{\text {noair }}=2.743-1.942=0.801 \mathrm{ft}=9.61 \mathrm{in}
\end{gathered}
$$

10	$\mathrm{pfx} x$	8.68	in	A measure of the "break" of the pitch in the $\mathrm{x}-$ direction.
11	$\mathrm{pfx} z$	9.55	in	A measure of the "break" of the pitch in the $\mathrm{y}-$ direction.

A Problem on Forces

Problem 6: Given the weight of a baseball is 0.320 lbs , find the x, y, and z components of the force exerted on the ball by the air during its flight.

Use Newton's Second Law along each direction. Along x and y the only force is due to the air,

$$
\begin{aligned}
& F_{x}=m a_{x}=m g\left(\frac{a_{x}}{g}\right)=(0.320)\left(\frac{13.233}{32.174}\right)=0.132 \mathrm{lbs} \\
& F_{y}=m a_{y}=m g\left(\frac{a_{y}}{g}\right)=(0.320)\left(\frac{25.802}{32.174}\right)=0.257 \mathrm{lbs}
\end{aligned}
$$

$x_{0}=1.664 \mathrm{ft}$	$v_{\mathrm{xo}}=-6.791 \mathrm{ft} / \mathrm{s}$	$\mathrm{a}_{\mathrm{x}}=13.233 \mathrm{ft} / \mathrm{s}^{2}$		
$y_{0}=50.00 \mathrm{ft}$	$\mathrm{v}_{\mathrm{yo}}=-123.055 \mathrm{ft} / \mathrm{s}$	$\mathrm{a}_{\mathrm{y}}=25.802 \mathrm{ft} / \mathrm{s}^{2}$		
$z_{0}=6.597 \mathrm{ft}$	$v_{\mathrm{zo}}=-5.721 \mathrm{ft} / \mathrm{s}$	$a_{z}=-17.540 \mathrm{ft} / \mathrm{s}^{2}$	\quad	$F_{\mathrm{x}}=0.132 \mathrm{lbs}$
:---				

A Problem on Forces

Problem 6: Given the weight of a baseball is 0.320 lbs , find the x, y, and z components of the force exerted on the ball by the air during its flight.

Along z gravity is also in play,

$$
F_{z}-m g=m a_{z} \Rightarrow F_{z}=m g+m g\left(\frac{a_{z}}{g}\right)=m g\left(1+\frac{a_{z}}{g}\right)=(0.320)\left(1+\frac{-22.232}{32.174}\right)=0.146 l b s
$$

The magnitude of the force caused by the air is,

$$
F_{\text {air }}=\sqrt{F_{x}^{2}+F_{y}^{2}+F_{z}^{2}}=\sqrt{(0.132)^{2}+(0.257)^{2}+(0.146)^{2}}=0.324 \mathrm{lbs}
$$

The force exerted by the air is about equal to the weight!

$\mathrm{x}_{\mathrm{o}}=1.664 \mathrm{ft}$	$\mathrm{v}_{\mathrm{xo}}=-6.791 \mathrm{ft} / \mathrm{s}$	$\mathrm{a}_{\mathrm{x}}=13.233 \mathrm{ft} / \mathrm{s}^{2}$	$\mathrm{F}_{\mathrm{x}}=0.132 \mathrm{lbs}$
$\mathrm{y}_{0}=50.00 \mathrm{ft}$	$\mathrm{v}_{\mathrm{yo}}=-123.055 \mathrm{ft} / \mathrm{s}$	$\mathrm{a}_{\mathrm{y}}=25.802 \mathrm{ft} / \mathrm{s}^{2}$	$F_{y}=0.257 \mathrm{lbs}$
$z_{0}=6.597 \mathrm{ft}$	$\mathrm{v}_{\mathrm{zo}}=-5.721 \mathrm{ft} / \mathrm{s}$	$\mathrm{a}_{\mathrm{z}}=-17.540 \mathrm{ft} / \mathrm{s}^{2}$	$\mathrm{F}_{\mathrm{z}}=0.146 \mathrm{lbs}$

Thanks to sportofsfoc

 MLB.com ${ }^{2}$ SFor turning this... Into this...

