Some Physics of Well Hit Balls

David Kagan
Professor of Physics Emeritus
California State University, Chico

AKA: Dr. Baseball, Ph.D.

MajorLeaguePhysics.org
DrBaseballPhD@gmail.com

Physics
 DUMMIES

Just for Dan Brooks....

Statcast

 DUMMIES

From the MLB.com $\left.{ }^{1}\right]$ Statcast Glossary

Statcast collects data using a series of high-resolution optical cameras along with radar equipment. The technology precisely tracks the location and movements of the ball and every player on the field, resulting in an unparalleled amount of information covering everything from the pitcher to the batter to baserunners and defensive players.

Two Pieces of the 2015 Data Set to be Used:

Exit velocity: Velocity of the ball off the bat on batted balls.
Launch angle: The vertical angle at which the ball leaves the bat on a batted ball.

Exit velocity: Velocity of the ball off the bat on batted balls.

Launch angle: The vertical angle at which the ball leaves the bat on a batted ball.

Just after leaving the bat

Angle vs Exit Velocity - Stanton

Angle vs Exit Velocity - Harper

Angle vs Exit Velocity - Trout

Back to the Launch Angle vs. Exit Velocity

The arrow shape is real, not an illusion for the best batters.

Before we go into any physics, let's use some "common sense" from a game of eight ball.

The Physics of Pool

Direct Hit

Indirect Hit

The Physics of Baseball

Direct
Hit
"on the screws"

"Common Sense" tells us:

- For a given launch angle, there is a maximum speed. For lower launch angles this speed is larger.

The arrow is explained!

But as my wife often reminds me, "Common sense is neither!"

Some Physics of the Ball-Bat Collision

Our Goal

Explain the plots of the launch angle θ versus the exit velocity u.

Just before collision

Just after collision

Some Physics of the Ball-Bat Collision

Physics Principles:

Linear Momentum is conserved:

$$
0=M u \sin \theta-m v \sin \phi
$$

Just before collision

Some mechanical energy is lost during the collision:

$$
\frac{1}{2} m u^{2}+\frac{1}{2} M v^{2}=e\left(\frac{1}{2} m u_{o}^{2}+\frac{1}{2} M v_{o}^{2}\right)
$$

Just after collision

Launch Angle vs. Exit Velocity All Batters 2015

Here's the best I
could do:

- $\mathrm{v}_{\mathrm{o}}=70 \mathrm{mph}$
- $\mathrm{u}_{0}=90 \mathrm{mph}$
- $e=58 \%$

There is something wrong.

Launch Angle vs. Exit Velocity
All Batters 2015

Lifting the curve 9° gives this beautiful fit!

What gives?

Launch Angle vs. Exit Velocity
All Batters 2015

Batters typically have an upper cut that biases
 the launch angle upward!

Ichiro
 Suzuki's 3000th Hit

What have we learned?

Plots of Launch Angle vs. Exit Speed form an arrow because:

- For a given launch angle, there is a maximum speed.
- For lower launch angles this speed is larger.

Homers form a cluster.

- Launch angles 15 to 45 degrees.
- Exit Velocity 90 to 115 mph .

Is it Physics
 Or "Common Sense?"

For more physics and baseball visit:

MajorLeaguePhysics.org

