The Corrected Diffusion Approximation

Shelley B. Rohde, PhD Candidate in Applied Mathematics
Arnold D. Kim, Associate Professor
srohde@ucmerced.edu adkim@ucmerced.edu

University of California, Merced
What I do

I model light propagation in biological tissues for the purpose of locating early stage cancer cells.
Summary

What I do
I model light propagation in biological tissues for the purpose of locating early stage cancer cells.

Why is it important?
Cancer!
Early detection
Summary

- What I do
 I model light propagation in biological tissues for the purpose of locating early stage cancer cells.
- Why is it important?
 Cancer!
 Early detection
- How it’s done
 The Corrected Diffusion Approximation
Summary

■ What I do
 I model light propagation in biological tissues for the purpose of locating early stage cancer cells.

■ Why is it important?
 Cancer!
 Early detection

■ How it’s done
 The Corrected Diffusion Approximation

■ Something Awesome (Redacted)
Summary

- What I do
 I model light propagation in biological tissues for the purpose of locating early stage cancer cells.

- Why is it important?
 Cancer!
 Early detection

- How it’s done
 The Corrected Diffusion Approximation

- Something Awesome (Redacted)

- Results
Tissue Structure

a. Epithelial Layer
b. Stromal Layer
c. Smooth Muscle Layer
Goal: Model diffuse reflectance measurements of backscattered light by a turbid medium close to the source.
Goal: Model diffuse reflectance measurements of backscattered light by a turbid medium close to the source.

- Use a thin continuous beam incident normally on the medium
- Represent medium by a semi-infinite half space
- Given constant scattering and absorption coefficients
Microscopic

Maxwell’s equations provide a rigorous model for EM wave propagation
Light Propagation In Tissue

- **Microscopic**
 Maxwell’s equations provide a rigorous model for EM wave propagation

- **Mesoscopic**
 The Radiative Transport equation provides a model for light propagation as transport of particles
The Radiative Transport Equation is given by:

\[\hat{s} \cdot \nabla I + \mu_a I + \mu_s \mathcal{L} I = 0 \]
The Radiative Transport Equation is given by:

\[\hat{s} \cdot \nabla I + \mu_a I + \mu_s \mathcal{L} I = 0 \]

\[\mathcal{L} I = I - \int_{S^2} p(\hat{s} \cdot \hat{s}') I(\hat{s}', r) d\hat{s}' \]
The Radiative Transport Equation is given by:

\[\hat{s} \cdot \nabla I + \mu_a I + \mu_s \mathcal{L} I = 0 \]

\[\mathcal{L} I = I - \int_{S^2} p(\hat{s} \cdot \hat{s}') I(\hat{s}', r) d\hat{s}' \]

\(p \) defines the fraction of power scattered in direction \(\hat{s} \) incident from direction \(\hat{s}' \).

\[\int_{S^2} p(\hat{s} \cdot \hat{s}') d\hat{s}' = 1 \]
Boundary Condition

For a normally incident, Gaussian beam we consider

\[I(\mu, \varphi, x, y, 0) - r(\mu)I(-\mu, \varphi, x, y, 0) = \frac{\delta(\mu - 1)}{2\pi} f(x, y), \quad 0 < \mu \leq 1 \]

where,

\[f(x, y) = \frac{1}{2\pi w^2} e^{-\frac{x^2 + y^2}{2w^2}} \]
Boundary Condition

For a normally incident, Gaussian beam we consider

\[I(\mu, \varphi, x, y, 0) - r(\mu)I(-\mu, \varphi, x, y, 0) = \frac{\delta(\mu - 1)}{2\pi} f(x, y), \quad 0 < \mu \leq 1 \]

where

\[f(x, y) = \frac{1}{2\pi w^2} e^{-\frac{x^2 + y^2}{2w^2}} \]

and

\[I \rightarrow 0 \quad \text{as} \quad z \rightarrow \infty \]

In this, \(r(\mu) \) is the Fresnel reflection coefficient at the boundary.
Light Propagation In Tissue

- Microscopic
 Maxwell’s equations provide a rigorous model for EM wave propagation

- Mesoscopic
 The Radiative Transport equation provides a model for light propagation as transport of particles

- Macroscopic
 The Diffusion Approximation is an approximation to the RTE.
We assume scattering is strong and absorption is weak ($\mu_s >> \mu_a$)
We assume scattering is strong and absorption is weak ($\mu_s >> \mu_a$).

We assume isotropic scattering ($g = 0$).
Diffusion Approximation

- We assume scattering is strong and absorption is weak ($\mu_s >> \mu_a$)
- We assume isotropic scattering ($g = 0$)
- The Diffusion equation is of the form

$$\nabla \cdot (D \nabla \Phi) - \mu_a \Phi = S.$$

In this, $D = \frac{1}{3(\mu_a + \mu_s(1-g))}$, and S is the interior source term.
Diffusion Approximation

- We assume scattering is strong and absorption is weak ($\mu_s \gg \mu_a$)
- We assume isotropic scattering ($g = 0$)
- The Diffusion equation is of the form

$$\nabla \cdot (D \nabla \Phi) - \mu_a \Phi = S.$$

in this, $D = \frac{1}{3(\mu_a + \mu_s(1-g))}$, and S is the interior source term.

Problem: This is known to be invalid close to the source.
Corrected Diffusion Model

Bridges the gap between Diffusion and RTE for tissues close to the boundary
Corrected Diffusion Model

Bridges the gap between Diffusion and RTE for tissues close to the boundary

- Compute Interior Solution (Diffusion, \(\Phi \))
Corrected Diffusion Model

Bridges the gap between Diffusion and RTE for tissues close to the boundary

- Compute Interior Solution (Diffusion, Φ)
- Compute Boundary Layer Solution (RTE, Ψ)
Corrected Diffusion Model

Bridges the gap between Diffusion and RTE for tissues close to the boundary

- Compute Interior Solution (Diffusion, Φ)
- Compute Boundary Layer Solution (RTE, Ψ)
- Combine results to satisfy original conditions

$$I(x, y, z, \hat{s}) = \Phi(x, y, z) + \Psi(x, y, z, \hat{s})$$
Three length scales in our analysis \((\ell_s \ll w \ll \ell_a) \)

- Scattering mean free path, \(\ell_s = \frac{1}{\mu_s} \)
- Characteristic absorption length, \(\ell_a = \frac{1}{\mu_a} \)
- Beam width \(w \)
Derivation of CDA: Rescaling

- Three length scales in our analysis \((\ell_s \ll w \ll \ell_a)\)
 - Scattering mean free path, \(\ell_s = \frac{1}{\mu_s}\)
 - Characteristic absorption length, \(\ell_a = \frac{1}{\mu_a}\)
 - Beam width \(w\)

- Use our length scales to define small parameters \(\alpha\) and \(\beta\)
 \[
 \alpha = \frac{\ell_s}{\ell_a} \\
 \beta = \frac{\ell_s}{w}
 \]
Derivation of CDA: Rescaling

Three length scales in our analysis ($\ell_s \ll w \ll \ell_a$)

- Scattering mean free path, $\ell_s = \frac{1}{\mu_s}$
- Characteristic absorption length, $\ell_a = \frac{1}{\mu_a}$
- Beam width w

Use our length scales to define small parameters α and β

- $\alpha = \frac{\ell_s}{\ell_a}$
- $\beta = \frac{\ell_s}{w}$

Rescale (x, y, z) with respect to w which nondimensionalizes the problem

Solve the rescaled, nondimensionalized equation using the fact that $\alpha \ll \beta \ll 1$
\[
\beta \mu \partial_z I + \beta \sqrt{1 - \mu^2} (\cos \varphi \partial_x I + \sin \varphi \partial_y I) + \alpha I + \mathcal{L} I = 0
\]
\[\beta \mu \partial_z I + \beta \sqrt{1 - \mu^2} (\cos \varphi \partial_x I + \sin \varphi \partial_y I) + \alpha I + \mathcal{L} I = 0 \]

Subject to boundary conditions

\[
I(\mu, \varphi, x, y, 0) = \frac{\delta(\mu - 1)}{2\pi} f(x, y) + r(\mu) I(-\mu, \varphi, x, y, 0), \quad 0 < \mu \leq 1,
\]

\[I \to 0 \quad \text{as} \quad z \to \infty. \]
CDA: Rescaled Problem

\[\beta \mu \partial_z I + \beta \sqrt{1 - \mu^2} (\cos \varphi \partial_x I + \sin \varphi \partial_y I) + \alpha I + \mathcal{L} I = 0 \]

Subject to boundary conditions

\[I(\mu, \varphi, x, y, 0) = \frac{\delta(\mu - 1)}{2\pi} f(x, y) + r(\mu) I(-\mu, \varphi, x, y, 0), \quad 0 < \mu \leq 1, \]

\[I \to 0 \quad \text{as} \quad z \to \infty. \]

In these, \(r(\mu) \) is the Fresnel reflection coefficient at the boundary.

We represent \(I \) as the sum of an interior solution and a boundary layer solution as in [\(\Phi + \Psi \)]

\[(I = \Phi + \Psi) \]

In solving for Φ, we find that ϕ_0 must satisfy the nondimensionalized diffusion equation

$$\nabla \cdot (\kappa \nabla \phi_0) - \frac{\alpha}{\beta^2} \phi_0 = 0.$$
In solving for Φ, we find that ϕ_0 must satisfy the nondimensionalized diffusion equation

$$\nabla \cdot (\kappa \nabla \phi_0) - \frac{\alpha}{\beta^2} \phi_0 = 0.$$

in this $\kappa = \frac{1}{3(1 - g)}$, and we have a solution of the form

$$\Phi = \phi_0(r) - \beta \hat{s} \cdot [3 \kappa \nabla \phi_0(r)] + O(\beta^2),$$
In solving for Φ, we find that ϕ_0 must satisfy the nondimensionalized diffusion equation

$$\nabla \cdot (\kappa \nabla \phi_0) - \frac{\alpha}{\beta^2} \phi_0 = 0.$$

in this $\kappa = \frac{1}{3(1 - g)}$, and we have a solution of the form

$$\Phi = \phi_0(r) - \beta \hat{s} \cdot [3\kappa \nabla \phi_0(r)] + O(\beta^2),$$

This solution alone cannot satisfy the boundary condition, and we apply a boundary layer solution
Introduce stretched variable $z = \beta Z$, such that

$$\psi(\hat{s}, x, y, Z) = \Psi(\hat{s}, x, y, \beta Z),$$
Boundary Layer Solution

Introduce stretched variable $z = \beta Z$, such that

$$\psi(\hat{s}, x, y, Z) = \Psi(\hat{s}, x, y, \beta Z),$$

substitute into the RTE

$$\mu \psi_Z + \beta \sqrt{1 - \mu^2}(\cos \varphi \psi_x + \sin \varphi \psi_y) + \alpha \psi + \mathcal{L} \psi = 0$$
We apply the modified boundary condition for $\psi = I - \Phi$

\[
\psi(\mu, \varphi, x, y, 0) - r(\mu)\psi(-\mu, \varphi, x, y, 0) = \frac{\delta(\mu - 1)}{2\pi} f(x, y) - [1 - r(\mu)]\phi_0(x, y, 0) + 3\beta\kappa\mu [1 + r(\mu)]\phi_{0,z}(x, y, 0), \quad 0 < \mu \leq 1
\]

Where $\psi = \psi_0 + \beta\psi_1$
We apply the modified boundary condition for $\psi = I - \Phi$

$$\psi(\mu, \varphi, x, y, 0) - r(\mu)\psi(-\mu, \varphi, x, y, 0) =$$

$$\frac{\delta(\mu - 1)}{2\pi} f(x, y) - [1 - r(\mu)]\phi_0(x, y, 0) + 3\beta\kappa\mu[1 + r(\mu)]\phi_{0,z}(x, y, 0), \quad 0 < \mu \leq 1$$

Where $\psi = \psi_0 + \beta\psi_1$, and ψ_0 satisfies the 1-D RTE

$$\mu\psi_{0,Z} + \mathcal{L}\psi_0 = 0.$$

ψ_1 satisfies

$$\mu\psi_{1,Z} + \mathcal{L}\psi_1 = -\sqrt{1 - \mu^2}(\cos \varphi\psi_{0,x} + \sin \varphi\psi_{0,y})$$
Asymptotic Matching

The 1-D RTE in ψ can be solved as a constant
Asymptotic Matching

The 1-D RTE in ψ can be solved as a constant.

We ensure that the constant solution is zero to satisfy $\psi \to 0$ as $Z \to \infty$.
Asymptotic Matching

The 1-D RTE in ψ can be solved as a constant.

We ensure that the constant solution is zero to satisfy $\psi \to 0$ as $Z \to \infty$.

This returns the boundary condition for the diffusion approximation:

$$a_0 \phi_0 - b_0 \phi_{0,z} = f_0 f(x, y), \quad z = 0$$
Asymptotic Matching

The 1-D RTE in ψ can be solved as a constant

We ensure that the constant solution is zero to satisfy $\psi \to 0$ as $Z \to \infty$

This returns the boundary condition for the diffusion approximation

$$a_0 \phi_0 - b_0 \phi_{0,z} = f_0 f(x, y), \quad z = 0$$

a_0, b_0, and f_0 are determined numerically using the boundary condition for ψ and a numerically calculated Green’s function for the 1-D RTE
Asymptotic Matching

The 1-D RTE in ψ can be solved as a constant

We ensure that the constant solution is zero to satisfy $\psi \to 0$ as $Z \to \infty$

This returns the boundary condition for the diffusion approximation

$$a_0 \phi_0 - b_0 \phi_{0,z} = f_0 f(x, y), \quad z = 0$$

a_0, b_0, and f_0 are determined numerically using the boundary condition for ψ and a numerically calculated Green’s function for the 1-D RTE

We next solve for ϕ and then apply the full boundary condition with the numerically calculated Green’s function to determine ψ
We can now solve

\[\nabla \cdot (\kappa \nabla \phi) - \alpha \phi = 0, \]
\[a_0 \phi - b_0 \phi_z = f_0 f(xy), \quad \text{at} \quad z = 0. \]
We can now solve
\[\nabla \cdot (\kappa \nabla \phi) - \alpha \phi = 0, \]
\[a_0 \phi - b_0 \phi_z = f_0 f(xy), \quad \text{at} \quad z = 0. \]

Using Fourier Transforms \((x, y) \rightarrow (\xi, \eta)\)

\[-\xi^2 \kappa \hat{\phi} - \eta^2 \kappa \hat{\phi} + \kappa \partial_z^2 \hat{\phi} - \alpha \hat{\phi} = 0, \]
We can now solve

\[\nabla \cdot (\kappa \nabla \phi) - \alpha \phi = 0, \]

\[a_0 \phi - b_0 \phi_z = f_0 f(xy), \quad \text{at} \quad z = 0. \]

Using Fourier Transforms \((x, y) \rightarrow (\xi, \eta)\)

\[-\xi^2 \kappa \hat{\phi} - \eta^2 \kappa \hat{\phi} + \kappa \partial_z^2 \hat{\phi} - \alpha \hat{\phi} = 0, \]

Since \(\phi\) decays exponentially in \(z\) we set \(\gamma(\xi, \eta) = -\sqrt{\alpha/\kappa + \xi^2 + \eta^2}.\)

Substituting this into the BC we find

\[\hat{\phi} = \frac{f_0 f(\xi, \eta)}{a_0 + b_0 \gamma}, \quad z = 0. \]
Reflectance Calculation

- Solve 1D RTE with Plane Wave Solutions
Reflectance Calculation

- Solve 1D RTE with Plane Wave Solutions
- Build Greens Function numerically
Reflectance Calculation

- Solve 1D RTE with Plane Wave Solutions
- Build Greens Function numerically
- Integrate with our source terms to solve for Ψ and Φ, $I = \Psi + \Phi$
Reflectance Calculation

- Solve 1D RTE with Plane Wave Solutions
- Build Greens Function numerically
- Integrate with our source terms to solve for Ψ and Φ, $I = \Psi + \Phi$
- Integrate over the range of angles exiting the medium to determine reflectance at the boundary

$$R(x, y) = -\int\int_{NA} I(r, \hat{s})\hat{s} \cdot \hat{z} d\hat{s}.$$

Results: How good is it?

\[\mu_a = 0.2 (mm)^{-1}, \mu_s = 100 (mm)^{-1}, g = 0.8, n_{rel} = 1.4, \text{ BeamFWHM} = 1 \]
Results: How good is it?

\[\mu_a = 2 (mm)^{-1}, \mu_s = 100 (mm)^{-1}, g = 0.8, n_{rel} = 1.4, \text{BeamFWHM} = 1 \]
Results: How good is it?

\[\mu_a = 5 (mm)^{-1}, \mu_s = 100 (mm)^{-1}, g = 0.8, n_{rel} = 1.4, BeamFWHM = 1 \]
$\mu_a = 10 (mm)^{-1}$, $\mu_s = 100 (mm)^{-1}$, $g = 0.8$, $n_{rel} = 1.4$, $Beam FWHM = 1$
Conclusions and Acknowledgements

We constructed a forward model for accurate reflectance measurements close to the source

- We have extended it to include Fresnel reflection, layered tissues, and oblique incidence
- These models give us an option for modeling epithelial tissue specifically in an effort to locate early stage cancer cells, as well as an effective and invertible model for calculating optical properties of tissue
Conclusions and Acknowledgements

We constructed a forward model for accurate reflectance measurements close to the source

- We have extended it to include Fresnel reflection, layered tissues, and oblique incidence
- These models give us an option for modeling epithelial tissue specifically in an effort to locate early stage cancer cells, as well as an effective and invertible model for calculating optical properties of tissue

To Do:

- Inverse problem
- Spatial frequency domain problem
Conclusions and Acknowledgements

We constructed a forward model for accurate reflectance measurements close to the source

- We have extended it to include Fresnel reflection, layered tissues, and oblique incidence
- These models give us an option for modeling epithelial tissue specifically in an effort to locate early stage cancer cells, as well as an effective and invertible model for calculating optical properties of tissue

To Do:

- Inverse problem
- Spatial frequency domain problem

Acknowledgements:

- Arnold D. Kim
- BLI team for the use of their Monte Carlo Virtual Tissue Simulator software
- A. D. Kim and S. Rohde acknowledge support from the National Science Foundation (NSF) for the work done on CDA.
Thank you!

