Laws, Principles, Useful Relationships, and Other Information

The Definition of Velocity: $\vec{v} = \frac{d\vec{r}}{dt}$

The Definition of Acceleration: $\vec{a} = \frac{d\vec{v}}{dt}$

The Kinematic Equations:

$$v = v_o + at$$
 $x = x_o + v_o t + \frac{1}{2}at^2$

$$v = v_o + at$$
 $x = x_o + v_o t + \frac{1}{2}at^2$ $v^2 = v_o^2 + 2a(x - x_o)$ $x - x_o = \frac{1}{2}(v + v_o)t$

Centripetal Acceleration:
$$a_c = \frac{v^2}{r}$$

Newton's Second Law
$$\Sigma F = ma$$

The Mass/weight Rule $F_g = mg$

Definition of Coefficient of Friction
$$\mu = \frac{F_{fr}}{F_n}$$

Definition of Work W = $\int \vec{F} \cdot d\vec{s}$

Definition of Kinetic Energy
$$K = \frac{1}{2} mv^2$$

Work-Energy Theorem $W_{net} = \Delta K$

The Definition of Power P =
$$\frac{dW}{dt}$$

Law of Conservation of Energy $\Delta K + \Delta U = W_{nc}$

Definition of Potential Energy $\Delta U = -W_c$

Gravitational Potential Energy $U_g = mgy$

Spring Potential Energy $U_s = \frac{1}{2}kx^2$

Dot Product $\vec{A} \cdot \vec{B} = AB \cos \theta = A_x B_x + A_y B_y + A_z B_z$

Cross Product
$$\vec{A} \times \vec{B} = AB\sin\theta \hat{n} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

Acceleration due to gravity $g = 9.80 \text{ m/s}^2$

Earth - mass: 5.98 x 10²⁴ kg radius: 6.38 x 106 m

Earth - moon distance: 3.82 x 108 m Moon - mass: 7.36 x 10²² kg radius: 1.74 x 10⁶ m

Sun - mass: 1.99 x 10³⁰ kg radius: 6.96 x 108 m Sun - Earth distance: 1.50 x 10¹¹ m