Laws, Principles, Useful Relationships, and Other Information

The Definition of Velocity: $\vec{v} = \frac{d\vec{r}}{dt}$

The Definition of Acceleration: $\vec{a} = \frac{d\vec{v}}{dt}$

The Kinematic Equations:

$$v = v_o + at$$
 $x = x_o + v_o t + \frac{1}{2} a t^2$

$$v = v_o + at$$
 $x = x_o + v_o t + \frac{1}{2}at^2$ $v^2 = v_o^2 + 2a(x - x_o)$ $x - x_o = \frac{1}{2}(v + v_o)t$

Centripetal Acceleration:
$$a_c = \frac{v^2}{r}$$

Newton's Second Law
$$\Sigma \vec{F}_{ext} = m\vec{a}_{cm}$$

The Mass/weight Rule
$$F_g = mg$$

Definition of Coefficient of Friction
$$\mu = \frac{F_{fr}}{F_{n}}$$

Definition of Work
$$W = \int \vec{F} \cdot d\vec{s}$$

Definition of Kinetic Energy
$$K = \frac{1}{2}mv^2$$

Work-Energy Theorem
$$W_{net} = \Delta K$$

The Definition of Power P =
$$\frac{dW}{dt}$$

Law of Conservation of Energy $\Delta K + \Delta U = W_{nc}$

Definition of Potential Energy $\Delta U = -W_c$

Spring Potential Energy
$$U_s = \frac{1}{2}kx^2$$

The Definition of Center of Mass
$$\vec{r}_{cm} = \frac{\int \vec{r} dm}{M}$$

The Definition of Linear Momentum
$$\vec{p} = m\vec{v}$$

The Original Second Law $\Sigma \vec{F} = \frac{dp}{dt}$

The Definition of Impulse
$$\vec{J} = \int_{t_0}^{t} \vec{F} dt$$

The Impulse-Linear Momentum Theorem $\Delta \vec{p} = \vec{J}$

The Definition of Angular Velocity:
$$\omega = \frac{d\theta}{dt}$$

The Definition of Angular Acceleration:
$$\alpha = \frac{d\omega}{dt}$$

Linear/Angular Relationships
$$s = r\theta$$
 $v_t = r\omega$ $a_t = r\alpha$ $a_c = \omega^2 r$

$$a_t = r\alpha$$
 $a_c = \omega^2 r$

The Definition of Torque
$$\vec{\tau} = \vec{r} \times \vec{F}$$
 ($\tau = F_{\perp}r = Fr_{\perp}$) The Second Law for Rotation $\Sigma \tau = I\alpha$ or $\Sigma \vec{\tau} = \frac{d\vec{L}}{dt}$

The Definition of Rotational Inertia $I = \int r^2 dm$

The Rotational Kinetic Energy $K = \frac{1}{2}I\omega^2$

The Definition of Angular Momentum $\vec{L} = \vec{r} \times \vec{p}$ The Angular Momentum of a Rigid Body $\vec{L} = I\vec{\omega}$

Dot Product $\vec{A} \cdot \vec{B} = AB\cos\theta = A_yB_y + A_yB_y + A_zB_z$

Cross Product
$$\vec{A} \times \vec{B} = AB\sin\theta \hat{n} = (A_yB_z - A_zB_y)\hat{i} + (A_zB_x - A_xB_z)\hat{j} + (A_xB_y - A_yB_x)\hat{k}$$

Moments of Inertia (about the cm unless noted):

disk: $\frac{1}{2}$ mr² hoop: mr²

solid sphere:
$$\frac{2}{5} \text{ mr}^2$$

solid sphere:
$$\frac{2}{5} \text{ mr}^2$$
 hollow sphere: $\frac{2}{3} \text{ mr}^2$

rod: $\frac{1}{12}$ m ℓ^2 rod (about one end): $\frac{1}{3}$ m ℓ^2 plate: $\frac{1}{12}$ m $\left(a^2 + b^2\right)$

Acceleration due to gravity $g = 9.80 \text{ m/s}^2$

Earth - mass: 5.98 x 10²⁴ kg radius: 6.38 x 10⁶ m

Moon - mass: 7.36 x 10²² kg radius: 1.74 x 10⁶ m Earth - moon distance: 3.82 x 108 m Sun - mass: 1.99 x 10³⁰ kg Sun - Earth distance: 1.50 x 10¹¹ m radius: 6.96 x 10⁸ m