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Section 19 – The Definition of Work 
 
Section Outline 

1. The Work Done by a Constant Force 
2. Review of the Vector Dot Product 
3. The Work Done by a Varying Force 

 
Why do objects do what they do?  Two ideas that help answer this question are force and linear 
momentum.  However, both force and momentum have additional mathematical complications because 
they are vectors.  Energy is another answer.  Energy has the advantage of being a scalar quantity.  As 
with momentum, we will be able to build a conservation law that is a very powerful tool for 
understanding why objects do what they do.  In this section will start our journey toward the Law of 
Conservation of Energy by defining a concept called, “work.” 
 
1. The Work Done by a Constant Force 
 

Think about the last time you had to push a car.  
Perhaps, the brake was on and you probably noticed 
that the force you exerted resulted in no acceleration 
of the car.  Maybe you remembered to release the 
brake and the car slowly began to move.  The point is 
that, while all forces in principle can cause 
acceleration, in some situations they just don’t.  
 
At the right is a block being pulled across a frictionless table by a 
constant force F, directed at an angle, θ, above the horizontal.  The 
component of the force that is along the motion, F||, causes the block to 
accelerate, while the component perpendicular to the table, F⊥, does not.  
It is generally true that forces along the direction of motion cause 
acceleration. 
 
In analogy to developing linear momentum, where we defined a quantity called impulse which is the 
force multiplied by the time, we define a quantity called “work” which is the force multiplied by the 
distance.  However, we only count the component of the force along the motion of the object, so the 
work done by a constant force is defined as, 

ΔW ≡ F||Δs , 
where ∆s is the distance the object moves. 
 
The units of work are the units of force times the units of distance so,  

[ΔW] = [F][s] =N ⋅m . 
This unit has its own name, 1N·m ≡ 1 Joule = 1J. 
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Example 19.1:  A 50.0N force is exerted at 30.0˚ above horizontal on a 20.0kg suitcase.  The 
suitcase moves at a constant speed for 4.00m.  Find the work done by each force that acts on it. 
 

Given: Fp = 50.0N, θ = 50.0˚, m = 20.0kg, and ∆s = 4.00m. 
Find: Wp = ?, Wkf = ?, Wn = ?, and Wg = ? 
 
To find the size of each force, apply the Second Law to each 
direction separately, 

ΣFx = max ⇒ Fp cosθ− Fkf = 0⇒ Fkf = Fp cosθ, 
ΣFy = may ⇒ Fn − Fg + Fp sinθ = 0⇒ Fn = Fg − Fp sin θ. 

Using the mass/weight rule and plugging in the numbers, 
Fg = mg = (20.0)(9.80)⇒ Fg = 196N , 
Fkf = 50.0 cos30.0˚⇒ Fkf = 43.3N , 

Fn = Fg − Fp sinθ = 196 − 50.0sin30.0˚⇒ Fn = 171N . 
Using the definition of work, 
ΔW ≡ F||Δs⇒Wp = (Fp cosθ)Δs = (43.3)(4)⇒Wp =173J . 
Note that only the component along the motion counts. 
ΔW ≡ F||Δs⇒Wkf = −FkfΔs = (−43.3)(4)⇒Wkf = −173J . 
Since the friction and motion are opposite, negative work is done. 
ΔW ≡ F||Δs⇒ Wn = 0  and 

� 

Wg = 0 . 
The work done by the normal force and gravity is zero because the forces don’t act along the 
motion. 

 
The total work done by all the forces on the suitcase adds up to zero.  This is because the suitcase 
doesn’t accelerate.  Now, let’s examine the case when the suitcase accelerates. 
 

Example 19.2:  Repeat example 1 for the case where the coefficient of kinetic friction is 0.200. 
 
Given: Fp = 50.0N, θ = 50.0˚, m = 20.0kg, µ = 0.200 and ∆s = 4.00m. 
Find: Wp = ?, Wkf = ?, Wn = ?, and Wg = ? 
 
The free body diagram is the same.  The only difference is that the frictional force is smaller.  
Using the definition of the coefficient of friction, 

� 

µk ≡
Fkf
Fn

⇒ Fkf = µkFn = (0.200)(171)⇒ Fkf = 34.2N  

The work  done by friction is, 

� 

ΔW ≡ F||Δs⇒Wkf = −FkfΔs = (−34.2)(4)⇒

� 

Wkf = −137J . 
The work done by the other three forces is the same as before, 

� 

ΔW ≡ F||Δs⇒

� 

Wp =173J , 

� 

Wn = 0  and 

� 

Wg = 0 . 
The total, or net, work done is, 

� 

Wnet =Wp +Wkf +Wg +Wn =173−137 + 0 + 0 = 35J . 
There is net work done when an object accelerates. 

 
 
The definition, 

� 

ΔW ≡ F||Δs is cumbersome and a bit sloppy.  It is cleaner to write this using the dot 
product. 
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2. Review of the Vector Dot Product 
 
 There are two types of vector multiplication.  One produces a scalar quantity and is called the 
“Dot” or “Scalar” product.  
  
 
The Vector Dot Product    

� 

 
A •
 
B ≡ ABcosθ = AxBx + AyBy + AzBz   

 
 

Example 19.3: For the two vectors   

� 

 
A = 40.0ˆ i + 20.0 ˆ j  and   

� 

 
B = 10.0ˆ i + 30.0 ˆ j  find (a)their dot 

product and (b)the angle between them. 
 
Given:   

� 

 
A = 40.0ˆ i + 20.0 ˆ j  and   

� 

 
B = 10.0ˆ i + 30.0 ˆ j . 

Find:   

� 

 
A •
 
B = ? and θ = ? 

 
(a)Using the equation for dot product,  

  

� 

 
A •
 
B = AxBx + AyBy = (40.0)(10.0) + (20.0)(30.0)⇒   

� 

 
A •
 
B =1000 . 

(b)Using the definition of the dot product,  

  

� 

 
A •
 
B = ABcosθ ⇒θ = arccos

 
A •
 
B 

AB
= arccos

 
A •
 
B 

Ax
2 + Ay

2 Bx
2 + By

2
 

Plugging in the numbers, 

� 

θ = arccos 1000
402 + 202 102 + 302

⇒

� 

θ = 45˚  

 
The dot product selects the component of one vector along the other and multiplies them.  
 

Example 19.4: For the two vectors   
 
A = 40.0ˆ i + 20.0ˆ j  and   

� 

 
B =10.0ˆ i + 30.0 ˆ j  

find the component of   

� 

 
B  along   

� 

 
A . 

 
Given:   

� 

 
A = 40.0ˆ i + 20.0 ˆ j ,   

� 

 
B = 10.0ˆ i + 30.0 ˆ j ,   

� 

 
A •
 
B =1000 , and θ = 45.0˚. 

Find: 

� 

B|| = Bcosθ = ? 
 
The component of   

� 

 
B  along   

� 

 
A  is Bcosθ.  Using the definition of the dot product,  

  

� 

 
A •
 
B = ABcosθ ⇒ B cosθ =

 
A •
 
B 

A
=

 
A •
 
B 

Ax
2 + Ay

2
=

1000
402 + 202

⇒

� 

B|| = Bcosθ = 22.4 . 

 

  

� 

 
A    

� 

 
B 
 

θ 
x 

y 
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The definition of work, ΔW ≡ F||Δs  can now be written more cleanly 
using the dot product, 

  ΔW ≡
 
F • Δ s . 

Comparing this to the old definition, 
  ΔW ≡

 
F • Δ s = FcosθΔs = F||Δs , 

just like before. 
 
3. The Work Done by a Varying Force 
 
The next step in expanding the definition of work is to apply it to 

non-constant forces.  The graph of a force that varies with 

distance is shown at the right.  Since the definition of work can 

only be applied to constant forces, the interval between so and s 

must be broken down into smaller intervals, ∆s, in which the 

force is nearly constant.  In each of these small intervals, the 

definition of work applies, so the total work done is, 

� 

W = ΔW1 + ΔW2 + ⋅ ⋅ ⋅ + ΔWN = F(so)Δx + F(so + Δs)Δs+ ⋅ ⋅ ⋅ + F(s)Δs . 
The total work done is the sum of the areas of each little rectangle formed by the average force in each 
interval times the distance ∆s.  The sum of these areas is the total area under the curve.  In other words, 
work can be defined as an integral. 
 
Another way to look at this is to let the ∆s’s become so small that they become differentials, 

  
ΔW ≡

 
F • Δ s → dW ≡

 
F •d s ⇒ dW

0

W

∫ =
 
F • d s 

s o

s

∫ ⇒ W =
 
F •d s 

so

s

∫ . 

We will use this as the definition of work from now on, 
The Definition of Work 

  
W ≡

 
F • d s ∫  

 
This definition of work includes all the previous definitions: if the force is constant, , and 
the dot product just picks off the part of the force along the direction of motion, ΔW ≡ F||Δs . 
 
The next example looks at a non-constant force exerted by a spring.  The 
force exerted by a spring grows as the spring is stretched.  For an ideal 
spring, the force it exerts is linearly proportional to the stretch, 

� 

Fs ∝ x⇒ Fs = kx . 
The constant of proportionality, k, is called the “spring constant” and it is the 
slope of the graph of the force versus the stretch.  In the upper image at the 

left, the spring is relaxed and exerts no force on the mass.  If the 
mass is moved a distance x to the right, as shown in the lower 
image, the spring exerts a force that is directed back to the left.  A 
minus sign is need to keep track of the direction which leads us to 

 
Hooke’s Rule   

� 

 
F s = −k x . 

  !W "
! 
F • !! s 

Fs 

x 

slope = k 

x 

s F 

m 

m 

x = 0 
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Example 19.5:  Using Hooke’s Rule, find (a)the work you must do to stretch the spring a 
distance x and (b)the work done by the spring.  Assume the stretching is done at constant speed. 
 
Given:   

� 

 
F s = −k x  

Find: Wp = ? and Ws = ? 
 
To stretch the spring you must pull on it.  Applying the Second Law to the end of the spring, 

� 

ΣF = ma⇒ Fp − Fs = 0⇒ Fp = Fs . 
The magnitude of both forces is the same since the velocity is constant.  According to Hooke’s 
Rule, 

� 

Fp = Fs = kx  
(a)The work you must do, can be found from the definition of work, 

  
W ≡

 
F • d s ∫ ⇒ Wp = Fpdx = kxdx

0

x

∫∫ ⇒ Wp =
1
2 kx2 . 

(b)The work done by the spring will be the same magnitude, but negative because the force 
exerted by the spring is opposite to the motion, 

  

� 

W ≡
 
F • d s ∫ ⇒Ws = − Fsdx = − kxdx

0

x∫∫ ⇒

� 

Ws = − 1
2 kx

2 . 
The total work done is equal to zero because the speed is constant. 

 
 
Section 19 - Summary 

Why do objects do what they do?  In addition to the two previous ideas of force and linear 
momentum, we have begun to develop a third concept, energy.  We are getting started by defining work.  

 
The Definition of Work 

  
W ≡

 
F • d s ∫  

where we use the 
 

Vector Dot Product   
 
A •
 
B ≡ ABcosθ = AxBx + AyBy + AzBz . 

 
The advantage of using the idea of work is that it is a scalar quantity as opposed to force that is a vector.   
 
We examined the work done by the non-constant of a spring summarized by, 
 

Hooke’s Rule   

� 

 
F s = −k x . 

 
 

x

sF

Fp


