
Physics 204A Class Notes 
 

35-1 

Section 35 – SHM and Circular Motion 
 

“What do objects do?” and “Why do they do it?”  Objects sometimes oscillate in simple 
harmonic motion.  In the last section we looked at mass vibrating at the end of a spring.  We applied the 
Second Law to derive the equations of motion for SHM.  In the process, we seemed to be using the idea 
of angular frequency just as we did when we looked at uniform circular motion.  In addition, the 
equations of motion for SHM look every similar to the equations of motion for uniform circular motion.  
In this section, we will investigate the connection between SHM and uniform circular motion.  

Next, we’ll continue to build our understanding of SHM by looking at the oscillatory motion of a 
simple pendulum.  We’ll discover that it also is SHM under certain conditions. 
 
Section Outline 

1. The Connection Between Uniform Circular Motion and SHM 
2. Energy in SHM 
3. The Simple Pendulum 

 
1. The Connection Between Uniform Circular Motion and SHM 
We have been using the idea of angular frequency as we did when 
we discussed circular motion.  There must be some connection, so 
let’s investigate.  At the right is an object going in a circle on a 
rotating turntable.  Just behind the object is a screen where the 
shadow of the object can be seen.  The shadow moves back and 
forth as the object goes in a circle.  The shadow appears to be in 
SHM. 
 
At the right is a sketch of the object in uniform circular motion.  It has a 
centripetal acceleration, a tangential velocity, and a position vector all 
shown.  If we redraw the three vectors with their tails at the origin we can 
imagine all three spinning as the object rotates.  Finding the x-components 
of each – the position, velocity, and acceleration of the shadow, 

x = r cosθ , vx = −vsinθ , and ax = −acosθ . 
 
The tangential velocity is related to this angular velocity, 

v = ωr . 
Also, the centripetal acceleration is related to the angular velocity, 

a = v
2

r
=

ωr( )2

r
⇒ a = ω2r . 

Substituting, we get, 
x = r cosθ , vx = −ωr sinθ , and ax = −ω 2r cosθ . 

Notice, just like SHM we have ax = −ω 2x .  The angle θ changes with 
time.  We can write this using the definition of angular frequency, 

ω ≡
dθ
dt

⇒ dθ∫ = ωdt∫ ⇒ θ =ωt + δ . 

Now we see another way of looking at the phase angle, δ, as just an integration constant.  
 
Finally, we can write the x-components of the, position, velocity and acceleration for the oscillating 
shadow as a function of time, 
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x(t) = r cos ωt + δ( ) , v(t) = −ωr sin ωt + δ( ) , and a(t) = −ω 2r cos ωt + δ( ) . 
These are the same as the SHM equations of motion with A instead of r.  The x component of the motion 
of an object in uniform circular motion is SHM.  That explains why we keep talking about angular 
frequencies! 
 

Example 35.1:  A 500g mass rests in equilibrium at the end of a horizontal spring with spring 
constant 9.80N/m.  The mass is given a sharp kick resulting in an initial velocity of 0.443m/s to 
the right. (a)Sketch the initial position, velocity, and acceleration vectors as if the object were in 
circular motion. Find (b)the location of the equivalent object 
in circular motion, (c)the phase angle, and (d)the equation for 
v(t). 
 
Given: k = 9.80N/m, m = 0.500kg, v(0) = 0.443m/s, and  
x(0) = 0. 
Find:  

r = ? ,  
v = ? ,  

a = ? , d = ?, and x(t)=? 
 
(a)We are given that the velocity vector is to the right and the 
initial position is zero.  Therefore, the x-component of the 
velocity must be at a maximum and point to the right.  The x-
component of the position and acceleration vectors must be 
zero.  The acceleration must point toward the center of the 
circle and the position must point outward.  The answer then 
is in the sketch at the upper right. 
(b)The equivalent object in circular motion with the vectors 
pointing the right direction must be as shown at the right. 
(c)Looking at the circle, the phase angle must be 270˚ or 3π2 . 
(d)Using the appropriate equation of motion for circular 
motion, the equation for the position as a function of time is 

v(t) = −vo sin(ωt + δ ) . 
The angular frequency for a spring is, 

ω =
k
m

=
9.8
.5

= 4.43 rad
s . 

So, 
v(t) = −0.443sin(4.43t + 3π

2 ) . 
Note this results in v(0) = +0.443m/s as required. 
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2. Energy in SHM  
We have already looked at energy in SHM.  The result was 
that the potential energy stored in a spring was given by, 

Us = 1
2 kx

2 . 
 
So, let’s look at an oscillating mass at the end of a spring.  In 
the top image at the right the mass is at rest at the equilibrium 
position of the spring.  In the middle, image the mass has been 
pulled to the right a distance A.  The system has a total energy 
equal to the potential energy in the spring, 

Eo =Us = 1
2 kA

2 . 
The lower image is after the mass has been released and it is 
heading back to the left.  It has a speed v when it reaches the position x.  There is still some potential 
energy in the spring plus some kinetic energy, 

E = K +Us = 1
2 mv

2 + 1
2 kx

2 . 
 Applying the Law of Conservation of Energy, 

Eo = E⇒ 1
2 kA

2 = 1
2 mv

2 + 1
2 kx

2 , 
and solving for the speed, 

v = ± k
m (A

2 − x2 ) . 

Recall for a spring, ω = k
m , so the speed can be written as, 

v = ±ω (A2 − x2 ) . 
This is the equation of motion for the speed as a function of position.  Earlier we found this equation by 
applying the Second Law and the definitions of velocity and acceleration.  Now, we see it is just an 
expression of the Law of Conservation of Energy. 
 
3. The Simple Pendulum 
A mass at the end of a string can certainly oscillate.  The question is, is it SHM.  Recall that the 
condition for SHM is, 

a(x) = −ω 2x , 
where ω is a constant.  For a mass at the end of a spring, Newton’s Second Law gave us, 

� 

a(x) = − k
m x . 

From this equation we found deduced that the motion was SHM with an angular frequency equal to the 
root of the constants on the right hand side, 

ω = k
m . 

If we apply the Second Law to other systems and find that the acceleration is equal to the negative of 
some constants multiplied by the position, then we can follow the same logic to deduce that the motion 
will be SHM with an angular frequency equal to the root of the constants.  Let’s look at some oscillatory 
systems and see if they are, in fact, SHM. 
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A “simple” pendulum consists of a very light string with a concentrated mass at the 
end.  The forces on the mass at the end are gravity and the tension.  However, the 
tension exerts no torque about the top of the string.  Applying the Second Law for 
Rotation, 

  
Στp = Iα⇒ −mg sinθ = m2α⇒ α = −

g

sinθ . 

Since we are looking at rotational motion, we are checking to see if the angular 
acceleration is equal to the negative of some constants multiplied by the angular 
position.  Sadly, this is not the case for the simple pendulum because we have a sinθ 
instead of just θ.  However, for small angles, 

  
sinθ ≈ θ ⇒α ≈ −

g

θ. 

This is the SHM equation, the acceleration (angular, in this case) is equal to minus 
some constants times the position (again, angular).  This is the same equation we got for the motion of 
the mass on the end of spring, except that θ replaces x.  In other words, the equations of motion for the 
angle, θ, will be the simple harmonic motion equations with an angular frequency equal to the root of 
the constants so long as the angle is small. 
 

Angular Frequency of a Simple Pendulum 
  
ω =

g


 

 
Example 35.2:  The pendulum in a grandfather clock must have a period of 2.00s so that each 
swing moves the second hand twice.  Find the length of the pendulum. 
 
Given: T = 2.00s 
Find:  = ? 
 
The angular frequency of a simple pendulum is, 

  
ω =

g


. 

It is related to the period, 

  
ω = 2πf = 2π

T
⇒T =

2π
ω

⇒ T = 2π 
g
⇒  =

gT2

4π2
. 

Plugging in the numbers, 

  
 =

(9.80)(2.00)2

4π2
⇒   

� 

 = 0.993m . 

This explains why all pendulums in grandfather clocks are about this size. 
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Section Summary 

Why do objects do what they do?  We have been building our understanding of simple harmonic 
motion.  We have learned that an object with an acceleration that is equal to minus the product of some 
constant and the position is in SHM an obeys the SHM equations of motion, 

 
a(x) = −ω2x  

v(x) = ±ω A2 − x2  
x(t) =A cos ωt + δ( )  
v(t) = −ωAsin ωt + δ( )  
a(t) = −ω 2Acos ωt + δ( )  

  
where A is the amplitude of the motion, ω is the angular frequency, and δ is the phase angle.  The 
angular frequency will be equal to the root of the constants. 
 
We examined the connection between circular motion and SHM.  SHM is the motion of the shadow of 
an object in uniform circular motion.  In other words, the equations of motion for the x-component of 
uniform circular motion are identical to the equations of motion for SHM. 
 
With the knowledge above, we look at the oscillations of a simple pendulum and found that they are 
indeed SHM with an angular frequency given by, 

  
ω =

g


. 

 
 

 


