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Section 36 – Systems Exhibiting SHM 
 

The goal of this course is to answer the questions, “What do objects do?” and “Why do they do 
it?”  Some objects exhibit simple harmonic motion or SHM.  We looked carefully at the typical example 
of a mass vibrating at the end of a spring.  We learned that any system where the acceleration is equal to 
minus a constant multiplied by the position is in SHM and obeys the SHM equations of motion.  In this 
section we will look at several additional systems that exhibit SHM. 
 
Section Outline 

1. The Torsional Pendulum 
2. The Physical Pendulum 
3. Other Systems in SHM 

 
For a mass at the end of a spring, Newton’s Second Law gave us, 

� 

a(x) = − k
m x . 

From this equation we found that the motion was oscillatory with an angular 
frequency equal to the root of the constants on the right hand side, 

ω = k
m . 

If we apply the Second Law to other systems and find that the acceleration is 
equal to the negative of some constants multiplied by the position, then we 
can follow the same logic to deduce that the motion will be SHM with an 
angular frequency equal to the root of the constants.  Let’s look at some 
oscillatory systems and see if they are, in fact, SHM. 
 
1. The Torsional Pendulum 

Perhaps you have seen a carriage clock such as the one 
shown at the left.  They have a rotating pendulum.  The 
spherical masses at the bottom are hanging from a fiber 
that oscillates back and forth with the spheres as shown at 
the right.  This is due to the fact that the fiber exerts a 
torque on them that is proportional to the angle of 
rotation, 

τ = −κθ , 
where κ is called the “torsion constant.”  This equation is 
sometimes referred to as Hooke’s Rule for Rotation.  You can see this effect if you 

just hang a pencil from a string.  If you rotate the pencil one way, the string will try to bring it back to 
where it was in equilibrium. 
 
Applying the Second Law for Rotation to the hanging spheres, 

Στ p = Iα ⇒ −κθ = Iα ⇒α = −
κ
I
θ , 

where I is the rotational inertia about the center.  Again we get the SHM equation where acceleration is 
equal to minus some constants times the displacement.  The root of the constants will be the angular 
frequency. 
 

Angular Frequency of a Torsional Pendulum ω =
κ
I
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Example 36.1:  The clock shown above has four 50.0g masses oscillating back and forth at a 
radius of 2.50cm.  The period of oscillation is 1.00s.  Find the torsion constant of the fiber. 
 
Given: m = 0.0500kg, r = 0.0250m, and T = 1.00s. 
Find: κ = ? 
 
The period is related to the frequency of the torsional pendulum,  

ω =
κ
Ip

⇒ T = 2π
Ip
κ

⇒ κ = 4π2
Ip
T2

. 

The rotational inertia of the pendulum about the center is, 

� 

Ip = 4mr2. 
The torsion constant is then, 

� 

κ = 4π2 4mr
2

T 2
=16π2 mr

2

T 2
=16π2 (0.0500)(0.0250)

2

(1.00)2
⇒

� 

κ = 4.93 mN ⋅m
rad . 

 
2. The Physical Pendulum 
A simple pendulum has all its mass concentrated at a point and 
oscillates due to gravitational torques.  Objects that don’t have their 
mass concentrated at a point also oscillate due to gravitational torques.  
These systems are called “physical pendulums.”  For example, consider 
a baseball bat held near the end.  Gravity provides a torque about the 
pivot point.  Applying the Second Law for Rotation, 

Στp = Iα⇒ −mgr sinθ = Ipα⇒ α = −
mgr
Ip
sin θ . 

Note that r and Ip depend on where you pivot the bat.  Assuming we 
keep the angle small, sinθ can be replaced with θ, 

α = −
mgr
Ip

θ . 

Once again we get the SHM equation.  The acceleration is equal to 
minus some constants times the displacement.  The root of the 
constants is the angular frequency. 
 

Angular Frequency of a Physical Pendulum ω =
mgr
Ip
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Example 36.2:  An 86.4cm long baseball bat has a mass of 0.820kg.  It’s center-of-mass is 
located 58.6cm from the handle end about which it oscillates with a period of 1.64s.  (a)Find the 
rotational inertia of the bat about the handle. (b)Compare the result with the value for a uniform 
stick. 
 
Given:  = 0.864m, m = 0.826kg, r = 0.586m, and T = 1.64s. 
Find: 
 
(a)The period is related to the frequency of the physical pendulum,  

ω =
mgr
Ip

⇒ T = 2π
Ip
mgr

. 

Solving for Ip,  

� 

Ip = mgrT 2

4π2
= (0.820)(9.80)(0.586)(1.64)

2

4π2
⇒

� 

Ip = 0.321kg ⋅m2 . 

(b)For a uniform stick pivoted about its end, 

  

� 

I = 1
3m

2 = 1
3 (0.820)(0.864)

2 ⇒

� 

I = 0.204kg ⋅m2 . 
The uniform stick has a smaller rotational inertia because a baseball 
bat has a greater fraction of its mass at the far end, making it harder to accelerate.  This is a 
disadvantage when you are trying to speed up the bat, but a big advantage when the collision 
with the ball is trying to slow it down. 

 
3. Other Systems in SHM 
We have looked at four common systems that exhibit SHM: a mass on the end of a spring, a simple 
pendulum, a torsional pendulum, and a physical pendulum.  They all have an acceleration is equal to the 
negative of some constants multiplied by the position.  There are many other systems that have the same 
property.  Here is an example of one such system. 
 

Example 36.3:  A diving board of length 3.00m 
and mass 20.0kg has a spring (k = 3000N/m) is 
attached 1.00m from the left end as shown.  In 
equilibrium it is horizontal.  Find (a)the 
compression of the spring when the board is 
horizontal, (b)an expression for the torque 
about the left end when the board is displaced 
by a small angle, (c)an expression for the 
angular acceleration at the small angle, and 
(d)the frequency of oscillation when it is slightly 
disturbed from equilibrium.  
 
Given: L = 3.00m, d = 1.00m, m = 20.0kg,  
and k = 3000N/m. 
Find: xo = ?, τ = ?, α = ? and f = ? 
 
(a)The forces that aren’t at the left end are shown above.  Applying the Second Law for Rotation 
about the left end and noting that the board is in equilibrium, 
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Στ = Iα ⇒ Fsd − Fg L

2 = 0⇒ Fsd = Fg L
2 . 

Using Hooke’s Rule and the mass/weight rule, 

kxo = mg L
2 ⇒ xo =

mgL
2k

. 

Plugging in the numbers, 

xo =
(20)(9.8)(3)
2(3000)

⇒ xo = 0.0980m = 9.8cm . 

(b)Noting that the lever arms are slightly shorter now, 
Στ = Fsd cosθ − Fg L

2 cosθ . 
The spring is less compressed now so, 

Στ = k(xo − d sinθ)d cosθ − mg L
2 cosθ = (kxod − mg L

2 − kd
2 sinθ)cosθ . 

Plugging in the expression for xo, 

Στ = (k mgL
2k

d − mg L
2 − kd

2 sinθ)cosθ . 

The first two terms cancel, so the answer,  
Στ = −kd 2 sinθ cosθ . 

(c)Applying the Second Law and using the rotational inertia of the stick about one end, 

Στ = Iα ⇒ −kd 2 sinθ cosθ = 1
3mL

2α ⇒ α = −
3kd 2

mL2
sinθ cosθ . 

(d)The angular acceleration is not equal to the negative of a constant times the angle, so the 
motion is not SHM.  However, for small angles cosθ→1 and sinθ→θ.   The angular acceleration 
becomes, 

α = −
3kd 2

mL2
θ . 

So, for small angles, the angular acceleration is equal to the negative of a constant times the 
angle, so the motion is SHM with a frequency related to the root of the constants, 

ω =
3kd 2

mL2
⇒ f = 1

2π
3kd 2

mL2
. 

Plugging in the values, 

f = 1
2π

3(3000)(1)2

20(3)2
⇒ f = 1.13Hz . 

 
So, we see that many systems can undergo SHM.  The only requirement is the acceleration is 

equal to the negative of a constant times the position.  The root of the constants will be the angular 
frequency. 
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Section Summary 

Why do objects do what they do? Sometimes they experience simple harmonic motion. If we 
examine the forces or torques on the system and find the resulting acceleration is equal to the negative of 
a constant times the position.  The root of the constants will be the angular frequency and the object will 
obey the equations of motion for SHM: 

a(x) = −ω2x  
v(x) = ±ω A2 − x2  
x(t) =A cos ωt + δ( )  
v(t) = −ωAsin ωt + δ( )  
a(t) = −ω 2Acos ωt + δ( )  

  
where A is the amplitude of the motion, ω is the angular frequency, and δ is the phase angle.   

 
We previously examined two systems that exhibit SHM and found their angular frequencies to 

be, 
 

ω =
k
m

 for a mass on the end of a spring and  

  
ω =

g


 for a simple pendulum. 

 
In this section we looked at two more two systems that exhibit SHM and found their angular 

frequencies to be, 
 

ω =
κ
Ip

 for a torsional pendulum and 

and ω =
mgr
Ip

 for a physical pendulum. 

 
We also looked at less general systems and developed the ability to identify SHM and find the 

frequency. 
 


