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Section 38 – The Law of Gravitation 
 
 What is the universe made out of and how do the parts interact? We’ve learned that objects do 
what they do because of forces, energy, linear and angular momentum.  In the last section, we began to 
build an understanding of the theory of gravitation by following the development of the theory through 
time.  In this section, we’ll continue our time travel as we look at the power of the Law of Universal 
Gravitation to explain gravitation using the idea of force.   
 Recall the experimental data of Tycho led to the synthesis of Kepler’s Three Rules which lead 
Newton to proposed the Law of Universal Gravitation.  So, we have made it to about 1700.  In this 
section we’ll move forward about 100 years as we learn about the next experimental contribution to our 
understanding of gravitation, the Cavendish Experiment. 
 

 
 
Section Outline 

1. Newton’s Law of Universal Gravitation 
2. Explaining Kepler’s Rules 
3. Cavendish and the Gravitation Constant 
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Experiment: 
Tycho Brahe 
(1546-1601) 
Spent most 
of his life 
compiling 
accurate 
records of 
planets and 
their orbits.  

Theory: 
Johannes 
Kepler 
(1571-1630) 
A student of 
Tycho and 
used his 
data to 
produce 
three rules 
of planetary 
motion. 

Theory: 
Sir Isaac 
Newton 
(1642-1727) 
Explained 
Kepler’s 
Rules by 
proposing the 
Law of 
Universal 
Gravitation. 

Experiment: 
Sir Henry 
Cavendish 
(1731-1810) 
Measured the 
strength of 
the 
gravitational 
force 
between 
objects. 

Theory: 
Albert 
Einstein 
(1879-1955) 
Explained 
the force of 
gravity in 
terms of the 
bending of 
space by 
matter by 
introducing 
the Theory 
of General 
Relativity. 
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1. Newton’s Law of Universal Gravitation 
 Isaac Newton was perhaps the greatest scientist ever.  His life was tumultuous, but he earned a 
degree at Trinity College in Cambridge, England.  Soon afterward, the college was temporarily closed 
due to what became known as the Great Plague.  Newton went home to Woolsthorpe and in the 
following two years developed the calculus, theories on optics, and the Law of Gravitation.  Newton was 
once quoted as saying, “If I have seen further it is by standing on the shoulders of giants.”  As we have 
seen, perhaps he was referring to the contributions of Tycho and Kepler. 
 
Consider two objects, m1 and m2, separated by some distance, r, as 
shown at the right.  They exert a force on each other given by, 
 

The Law of Universal Gravitation 
 


Fg = G

m1m2

r2
r̂  

 
where the gravitation constant is given by 

� 

G = 6.67x10−11 N ⋅m 2

kg 2
. 

 
Example 38.1:  Find the acceleration due to gravity on Mars. 
 
Given: Mm = 6.39x1023kg and Rm = 3.40x106m 
Find: gm = ? 
 
Applying the Second Law and the Law of Gravitation to the astronaut, 

� 

ΣF = ma⇒ Fg = mg⇒ G mMm

Rm
2 = mg⇒ g = G Mm

Rm
2  

Plugging in the values, 

� 

g = (6.67x1011) 6.39x10
23

(3.40x106)2
⇒

� 

g = 3.70m /s2 . 

Astronauts on Mars will feel about 40% of the gravitational acceleration 
as on Earth. 

 
 
2. Explaining Kepler’s Rules 
Theories and laws are considered superior if they can explain everything that has come before in a more 
coherent and compact framework.  The value in the Law of Gravitation is its ability to explain Kepler’s 
Rules with the unifying ideas we have built to explain why objects do what they do.  So below, we’ll go 
through each rule and explain it using the Law of Gravitation along with our hard won knowledge of 
forces, energy, linear and angular momentum. 
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Kepler’s First Rule - Elliptical Orbits: 
 
Applying the Second Law to the planet, 

  Σ
 
F = m a ⇒

 
F g = m a . 

Using the Law of Universal Gravitation for the force, 

  
G mM

r2 ˆ r = m a ⇒  a = G M
r2 ˆ r . 

The mass of the planet doesn’t affect the motion of the planet.  
This is the same idea we found with the Rule of Falling Bodies.  
It is very strange that the force on an object depends upon its mass, while its motion does not.  This 
oddity helped Einstein develop the Theory of General Relativity, but we’ll get to that later… 
 
Writing the unit vector in terms of the position vector, 

  

 a = G M
r2 ⋅
 r 
r
⇒
 a = G M

r3
 r . 

Substituting in x and y, 
d2x
dt2

ˆ i +
d2y
dt2

ˆ j 
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
= G M

x2 + y2( )32
(xˆ i + yˆ j ) . 

Equating the x-components and the y-components gives two horribly coupled differential equations, 
d2x
dt2

= G Mx
x2 + y2( ) 32

 and d
2y
dt2

= G My
x2 + y2( ) 32

. 

The solution of these equations is very messy.  However, the point is that with enough mathematical 
skill you would discover that the answer is an ellipse! 
 
Kepler’s Second Rule - Equal Areas: 
 
For a small angle, dθ, the area can be approximated by the triangle 
rule, one-half the base times the height, 

dA = 1
2 rds . 

Using the definition of speed, 

v ≡ ds
dt

⇒ ds = vdt⇒ dA = 1
2 rvdt . 

Multiplying the top and the bottom by the mass of the planet, 

dA =
rmv
2m

dt . 

The numerator is the angular momentum of the planet about the sun.  The rate at which the area is swept 
out is then, 

dA
dt

=
L
2m

. 

Since the gravitational force acts along the radius vector, the planet feels no torque due to the 
gravitational force.  Therefore, according to the Law of Conservation of Angular Momentum, the 
angular momentum is constant.  Since the angular momentum is constant, so is the rate at which area is 
swept out. 
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Example 38.2: The comet Giacobini–Zinner has an elliptical orbit with a perihelion of 
1.56x1011m.  It travels at 3.97x104m/s at perihelion.  It’s orbit has a semi-minor axis of 
6.81x1011m.  Find its speed when it crosses the semi-minor axis. 
 
Given: rp = 1.56x1011m, s = 6.81x1011m and  
V = 3.97x104m/s. 
Find: v = ? 
 
At perihelion the radius vector is perpendicular to the 
velocity vector, so the angular momentum of the comet 
is given by, 

 

L ≡ r × p⇒ Lp = rmV . 

When the comet crosses the semi-minor axis, the radius vector and the velocity vector are not 
perpendicular, 

 

L ≡ r × p⇒


Ls =


R × mv = m


R × v . 

The cross product will find the part of the radius vector that is perpendicular to the velocity, 
which is exactly the semi-major axis, 

 

Ls = m


R × v ⇒ Ls = msv . 

Using the Law of Conservation of Angular Momentum, 

Lp = Ls ⇒ rmV = msv⇒ v = V r
s
= (3.97x104 )1.56

6.81
⇒ v = 9.09x103 m

s . 

The speed of the comet increases as it nears the sun.  We found this using the angular 
momentum, but it is also consistent with the Law of Conservation of Energy. 

 
Kepler’s Third Rule - Rule of Periods: 
 
We’ll prove this rule for circular orbits and save the proof for elliptical orbits 
for Physics 301A.  Applying the Second Law to the planet, 

  Σ
 
F = m a ⇒ Fg = ma . 

Using the Law of Universal Gravitation and the centripetal acceleration, 

G mM
r2

=m v2

r
⇒ GM

r
= v2 . 

The speed is just the circumference divided by the period, 

GM
r

=
2πr
T

⎛ 
⎝ 

⎞ 
⎠ 

2

⇒ GM
r

=
4π 2r2

T2
⇒
T2

r3
=
4π2

GM
. 

So the square of the period divided by the cube of the radius is a constant for all planets in the solar 
system. 
 
While Kepler’s Rules are very useful for describing the motions of the planets, they don’t really go very 
far in explaining why planets do what they do.  Newton’s Law of Universal Gravitation not only 
explains why the planets do what they do, but goes deeper to describe gravity as a universal 
phenomenon.  Gravity is a force that is felt by all objects that have mass. 
 

v 

V 

R 
r θ s 
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Example 38.3: Given the period of orbit of Mars is 1.88 years as well as the masses of Mars and 
the sun.  Find its distance from the sun. 
 
Given: T = 1.88y = 5.93x107s, m = 6.39x1023kg, and M = 
1.99x1030kg. 
Find: r = ? 
 
Applying the Second Law to Mars, 

ΣF = ma⇒ Fg = ma . 
Using the Law of Universal Gravitation and the centripetal 
acceleration, 

G mM
r2

= m v2

r
⇒G M

r
= v2 . 

The speed is just the circumference divided by the period, 

G M
r

=
2πr
T

⎛
⎝⎜

⎞
⎠⎟
2

⇒ r = GMT 2

4π 2
3 . 

Plugging in the numerical values, 

r = (6.67x10−11)(1.99x1030 )(5.93x107 )2

4π 2
3 ⇒ r = 2.28x1011m . 

 
While Kepler’s Rules were once the best we could do, we really don’t need them anymore.  We can 
solve all problems involving gravitational motion using the mechanics we have learned with the addition 
of the Law of Universal Gravitation. 
 
2. Cavendish and the Gravitation Constant 
Newton was not able to do the numerical 
examples we completed above because he had no 
way of knowing the value of the gravitational 
constant.  This is were the experimental expertise 
of Henry Cavendish contributed to the story of 
gravitation. 
 
Cavendish was a British aristocrat born in France.  
He attended the University of Cambridge and 
developed a broad interest in science.  In 
addition to the experiment we are about to 
discuss, he is credited with the discovery of 
hydrogen. 
 
His device for measuring G consisted of a pair 
of spheres hanging from a fine thread (torsion fiber).  When two more sphere were brought close to the 
hanging pair, the pair rotated ever so slightly.  By accurately measuring the rotation, Cavendish 
measured the gravitational force between the spheres and therefore found a value for G. 
 
 

M 

r 

m 
Fg 
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When the second pair of spheres is put in place, the original pair will find a new equilibrium by rotating 
toward the second set by an angle, θ.  There will be two torques acting on the hanging spheres; the 
torque due to the gravitational forces and the torque caused by the fiber.  The torque caused by the fiber 
is proportional to the angle, 

τ f = κθ , 
where κ is called the torsion constant.  As we learned in the sections on SHM, the torsion constant can 
be found from the period of the oscillation about equilibrium.  The torque caused by the sphere M on the 
sphere m due to gravity is, 

  
τg =

1
2 ( )Fg =G

mM
2r2
 , 

where the Law of Universal Gravitation has been used.  The other two spheres M and m also exert an 
equal torque.  Applying the Second Law for Rotation to the hanging system, 

  
Στ = Iα⇒ τ f − 2τg = 0⇒ τf = 2τg ⇒κθ = 2GmM

2r2
. 

Solving for the gravitation constant, 

  
G =

κθr 2

mM
. 

All of these quantities can be measured to give a value for G.  The currently accepted value is, 
G = 6.67x10−11 N⋅m2

kg2 . 
 
Cavendish’s intent was not to find the value of G.  Instead, he wanted to find the mass of Earth.  What a 
clever person to realize that the gravitational torque between metal spheres 
could find the mass of Earth! 
 
Imagine a falling object a distance h above the surface, as shown at the right. 
The only force acting on it is gravity.  Applying the Second Law and the 
Law of Universal Gravitation, 

ΣF = ma⇒ Fg = mg⇒G mM
(R + h)2

= mg⇒M =
g(R + h)2

G
. 

Since the height is much smaller than the radius of Earth, 

M ≈
gR2

G
. 

 
The acceleration due to gravity was known since Galileo and the radius of Earth was known by 
measuring the curvature.  Once Cavendish measured G the mass of Earth became known.  Putting in the 
values, 

M =
(9.8)(6.4x106 )2

6.7x10−11
= 6.0x1024 kg . 
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Section Summary 
We continued our historical trip through the time to advance our understanding of the gravitational 
interaction.  We showed that 

The Law of Universal Gravitation 
  

 
F g = G m1m2

r2 ˆ r  

along with the rest of our knowledge of mechanics was sufficient to explain all three of Kepler’s Rules.  
In addition, we showed how Cavendish “weighed Earth” by designing an experiment to measure 
 

The Gravitational Constant G = 6.67x10−11 N ·m2

kg2
. 

 


