Motion and the Calculus

Pre-Class Questions:

Problem Set #3 (due next time)

Lecture Outline

- I. The Calculus of Motion
- 2. Mass on a Spring

We need to advance or understanding of these ideas by using our knowledge of the calculus.

Quantity	Definition	Mathematical Representation
Position	The location of an object with respect to a coordinate system	X
Displacement	A change in position	$\Delta x = x_f - x_i$
Average Velocity	The average rate of displacement	$\overline{v} \equiv \frac{\Delta x}{\Delta t} = \frac{x_f - x_i}{t_f - t_i}$
Speed	The magnitude of the velocity	v = v
Average Acceleration	The average rate of change of velocity	$\overline{a} \equiv \frac{\Delta v}{\Delta t} = \frac{v_f - v_i}{t_f - t_i}$

All of the changes become infinitesimal so Δ 's become d's.

Quantity	Definition	Mathematical Representation
Position	The location of an object with respect to a coordinate system	X
Displacement	A change in position	dx
Velocity	The rate of displacement	$v \equiv \frac{dx}{dt}$
Speed	The magnitude of the velocity	v = v
Average Acceleration	The rate of change of velocity	$a \equiv \frac{dv}{dt}$

Let's summarize our understanding of the definition of velocity: average $\overline{v} = \frac{\Delta x}{\Delta t}$ and instantaneous $v = \frac{dx}{dt}$

1. Algebraically, it can be thought of as an equation:

$$\overline{v} = \frac{x_f - x_i}{t_f - t_i}$$

2. Graphically, it can be thought of as the slope of the position versus time graph:

$$\overline{v} = \frac{\Delta x}{\Delta t} = \frac{rise}{run} = slope$$
 $v \equiv \frac{dx}{dt} = slope$ of tangent line

3. It can be rearranged and thought about in terms of the area under the velocity versus time graph:

$$\overline{v} = \frac{\Delta x}{\Delta t} \Rightarrow \Delta x = \overline{v} \Delta t = area$$
 $v = \frac{dx}{dt} \Rightarrow \int dx = \int v \, dt = area$

Let's summarize our understanding of the definition of acceleration: average $\bar{a} = \frac{\Delta v}{\Delta t}$ and instantaneous $a = \frac{dv}{dt}$

- I. Algebraically, average acceleration can be thought of as an equation: $\bar{a} = \frac{v_f v_i}{t_f t_i}$
- 2. Graphically, acceleration can be thought of as the slope of the velocity versus time graph:

$$\overline{a} = \frac{\Delta v}{\Delta t} = \frac{rise}{run} = slope$$
 $a \equiv \frac{dv}{dt} = slope$ of tangent line

3. It can be rearranged and thought about in terms of the area under the acceleration versus time graph:

$$\overline{a} = \frac{\Delta v}{\Delta t} \Rightarrow \Delta v = \overline{a} \Delta t = area$$
 $a = \frac{dv}{dt} \Rightarrow \int dv = \int a \, dt = area$

Below are five graphs of velocity of a car versus time where velocity is in meters/second and the time is in seconds. Rank them from greatest to least based upon the displacement of the car.

Example 1: The position versus time for the last pitch of Matt Cain's perfect game was given by $x = 50.0 - 137t + 13.5t^2$ where x is the distance from home in feet and t is the time in seconds. Find (a)the velocity as a function of time, (b)the acceleration as a function of time, (c)the initial speed of the ball, (d)the time to reach home plate, and (d)the speed when it the ball gets there.

A mass oscillates at the end of the spring. Shown above are images of the system at equal time intervals. Sketch the position versus time.

Sketch the velocity versus time.

Example 2: The equation for the acceleration of the mass is something like a = -A cos wt. Find the velocity as a function time and the position as a function of time.

Lecture 03 - Summary

Quantity	Definition	Mathematical Representation
Position	The location of an object with respect to a coordinate system	X
Displacement	A change in position	dx
Average Velocity	The average rate of displacement	$v \equiv \frac{dx}{dt}$
Speed	The magnitude of the velocity	v = v
Average Acceleration	The rate of change of velocity	$a \equiv \frac{dv}{dt}$