Uniform Circular Motion

Pre-Lecture Questions

Problem Set #9 (Solutions posted after class)

Lecture Outline

- I. Uniform Circular Motion
- 2. Centripetal Acceleration
- 3. Review of the Description of Motion

Pre-Class Summary:

Tangential Speed
$$v_t = \frac{2\pi r}{T}$$

Centripetal Acceleration
$$a_c = \frac{v^2}{r}$$

Centripetal acceleration points toward the center of the circle.

Equations of Motion for Circular Motion

$$a_x(t) = -\omega^2 r \cos \omega t$$
 $a_y(t) = -\omega^2 r \sin \omega t$
 $v_x(t) = -\omega r \sin \omega t$ $v_y(t) = \omega r \cos \omega t$
 $x(t) = r \cos \omega t$ $y(t) = r \sin \omega t$
 $a_x(x) = -\omega^2 x$ $a_y(y) = -\omega^2 y$

$$v_{x}(x) = \pm \omega \sqrt{r^{2} - x^{2}}$$
 $v_{y}(y) = \pm \omega \sqrt{r^{2} - y^{2}}$

At the left is a sketch of the moon orbiting Earth. Use the center of Earth as the origin. For each of the four images of the moon:

- 1. draw the position vector.
- 2. draw the velocity vector.
- 3. compare the lengths of each position vector?
- 4. compare the lengths of each velocity vector?
- 5. does the moon accelerate in its orbit? Explain.

Example 1: The moon is 3.84×10^8 m from Earth and it takes 27.3 days or 2.36×10^6 s to complete one orbit. Find (a)the magnitude of the position vector and (a)the magnitude of the velocity vector using the center of Earth as the origin.

At the right is a sketch of the moon orbiting Earth. The position and velocity vectors are shown at two times Δt apart during which the position and velocity vectors both rotate through an angle θ :

- 1. Draw the displacement vector $\Delta \vec{r}$. Label the triangle formed by the r vectors and Δr with an A.
- 2. Redraw the two velocity vectors on the coordinate systems at the right with their tails at the origin. Include the angle θ .
- 3. Draw the change in velocity vector $\Delta \vec{v}$. Label the triangle formed by the v vectors and Δv with a B.
- 4. Explain why A and B are similar triangles.
- 5. Find the ratio $\frac{\Delta v}{\Delta r}$ in terms of r and v. Solve for Δv .
- 6. Divide Δv by Δt to get the magnitude of the acceleration vector.
- 7. Show the result is, $a = \frac{v^2}{r}$

Example 2: A physics professor twirls a ball overhead in a circle of radius 50cm. The ball completes 5.0 revolutions per second. Find (a)the period, (b)the frequency, (c)the angular frequency, (d)the speed, and (e)the acceleration of the ball.

Example 3: A physics professor twirls a ball overhead in a circle of radius 50cm. The ball completes 5.0 revolutions per second. Assume the velocity vector points in the y-direction at t = 0. Find the components of the velocity vector of the ball when t = 0.025s.

Question: You come upon two friends arguing. The first one says that the moon orbits Earth at a constant velocity and therefore the moon is not accelerating. The second one says that since the moon in moving in a circle it must have a centripetal acceleration even though it has a constant velocity.

Choose one answer:

- A. Both are right.
- B. The first is right and the second is wrong.
- C. The second is right and the first is wrong.
- D. Both are wrong.

Correct the wrong statements.

Lecture 09- Summary

Tangential Speed
$$v_t = \frac{2\pi r}{T}$$

Centripetal Acceleration
$$a_c = \frac{v^2}{r}$$

Centripetal acceleration points toward the center of the circle.

Equations of Motion for Circular Motion

$$a_x(t) = -\omega^2 r \cos \omega t$$

$$v_x(t) = -\omega r \sin \omega t$$

$$x(t) = r \cos \omega t$$

$$a_{x}(x) = -\omega^{2}x$$

$$v_x(x) = \pm \omega \sqrt{r^2 - x^2}$$

$$a_{v}(t) = -\omega^{2} r \sin \omega t$$

$$v_{v}(t) = \omega r \cos \omega t$$

$$y(t) = r \sin \omega t$$

$$y(t) = r \sin \omega t$$
$$a_y(y) = -\omega^2 y$$

$$v_{x}(x) = \pm \omega \sqrt{r^{2} - x^{2}}$$
 $v_{y}(y) = \pm \omega \sqrt{r^{2} - y^{2}}$

Review of the Description of Motion

