Laws, Principles, Useful Relationships, and Other Information Coulomb's Rule $\vec{F}_e = k \frac{q_1 q_2}{r^2} \hat{r}$ Definition of Electric Field $\vec{E} = \frac{\vec{F}}{q}$ E-Field of a Point Charge $\vec{E} = k \frac{q}{r^2} \hat{r}$ $\vec{r}^{2} \qquad q$ Def'n of Dipole Moment \vec{p} qd
Torque on a Dipole $\vec{=} \vec{p} \times \vec{E}$ Def'n of Electric Flux $\vec{E} \cdot d\vec{A}$ Gauss's Law $\circ \vec{E} \cdot d\vec{A} = \frac{q_{enclosed}}{q}$ Potential Energy U = $-\vec{p} \cdot \vec{E}$ Electric Potential Energy $U = -q \vec{E} \cdot d\vec{s}$ Def'n of Electric Potential U q V Potential from E-field $V = -\vec{E} \cdot d\vec{s}$ Potential Due to a Charge Distribution $V = k \frac{dq}{r}$ Calculation of E-field from Potential $E_s = -\frac{dV}{ds}$ Definition of Capacitance C $\frac{Q}{V}$ Capacitance of Parallel Plates C = $_{0}\frac{A}{d}$ Addition of Capacitors in Series $\frac{1}{C_p} = \frac{1}{C_i}$ Addition of Capacitors in Parallel $C_p = C_i$ Stored Energy in Capacitors U = $\frac{1}{2}\frac{Q^2}{C} = \frac{1}{2}CV^2$ Stored Energy Electric Fields u $\frac{U}{vol} = \frac{1}{2}_{o}E^2$ Capacitors with Dielectrics C = C_o Definition of Current I $\frac{dQ}{dt}$ Free Electron Density n $\frac{N}{vol}$ Def'n of Current Density j $\frac{1}{\Delta}$ Drift Velocity j = ne Definition of Resistivity $\frac{m}{ne^2}$ Definition of Resistance $R = \frac{\ell}{A}$ Ohm's Rule V = IR Resistors in Series $R_s = R_i$ Resistors in Parallel $\frac{1}{R_p} = \frac{1}{R_i}$ RC Charge $q = CV \ 1 - e^{-\gamma'RC}$ RC Discharge $q = CV_o e^{-\gamma'RC}$

Physical Constants

$$k = 8.99 \times 10^9 \frac{N m^2}{C^2}$$
 $_o = 8.85 \times 10^{-12} \frac{C^2}{N m^2}$ $e = 1.60 \times 10^{-19} C$ $m_e = 9.1 \times 10^{-31} kg$ $c = 3.00 \times 10^8 m/s$

Areas and Volumes

sphere:	$A = 4 r^2$	$V = \frac{4}{3} r^3$
cylinder: cube:	$A = 2 r\ell + 2 r^{2}$ $A = 6a^{2}$	$V = r^2 \ell$ $V = a^3$

<u>Resistivity (µ ·cm)</u>		<u>D</u> ielectric	<u>Dielectric Constants</u>	
Silver	1.59	Pyrex	5.6	
Copper	1.7	Teflon	2.1	
Gold	2.44	Nylon	3.4	
Aluminum	2.82	Paper	3.7	
Iron	10	Water	80	

Free Electro	n Densities	$(x10^{28}/m^3)$
---------------------	-------------	------------------

Copper	8.45
Silver	5.85
Gold	5.90
Aluminum	18.1