Laws, Principles, Useful Relationships, and Other Information

Coulomb's Rule $\vec{F}_e = k \frac{q_1 q_2}{r^2} \hat{r}$ Def'n of E-Field $\vec{E} = k \frac{\vec{q}}{r^2} \hat{r}$ E-Field Due to a Point Charge $\vec{E} = k \frac{q}{r^2} \hat{r}$

Electric Potential $V = -\vec{E} \cdot d\vec{s}$ Def'n of Potential $U \neq V$ Potential of a Charge $V = k \frac{q}{r}$

Def'n of Capacitance C $\frac{Q}{V}$ Capacitance of Parallel Plates C = $\frac{A}{d}$

Energy in Capacitors $U = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} C V^2$ Energy in E-Fields $u = \frac{U}{vol} = \frac{1}{2} {}_{o}E^2$

Capacitors in Series $\frac{1}{C_s} = \frac{1}{C_i}$ Capacitors in Parallel $C_p = C_i$ Def'n of Current I $\frac{dQ}{dt}$

Def'n of Current Density j $\frac{I}{\Delta}$ Def'n of Resistance R = $\frac{\ell}{\Delta}$ Ohm's Rule V = IR

Electric Power $P = IV = \frac{V^2}{R} = I^2R$ Resistors in Series $R_s = R_i$ Resistors in Parallel $\frac{1}{R_p} = \frac{1}{R_i}$

RC Charge $q = CV \ 1 - e^{-t/RC}$ RC Discharge $q = CV_0 e^{-t/RC}$ Force Between Wires $F_m = \frac{\mu_0}{2} \frac{I_1 I_2}{r} \ell$

Def'n of B-Field \vec{F} $I\vec{\ell} \times \vec{B}$ Force on a Charge $\vec{F} = \vec{q} \times \vec{B}$ B-Field of a Wire $\vec{B} = \frac{\mu_0 I}{2 r}$

Def'n of Electric Dipole Moment \vec{p} q \vec{d} Def'n of Magnetic Dipole Moment $\vec{\mu}$ $\vec{I}\vec{A}$

Torque on a Dipole $\vec{} = \vec{p} \times \vec{E}$ or $\vec{} = \vec{\mu} \times \vec{B}$ Potential Energy of a Dipole $U = -\vec{p} \cdot \vec{E}$ or $U = -\vec{\mu} \cdot \vec{B}$

Biot-Savart Rule $\vec{B} = \frac{\mu_0}{4} \frac{Id\vec{s} \times \hat{r}}{r^2}$

Magnetic Moment of a Charge $\vec{\mu} = \frac{q}{2m}\vec{L}$ Def'n of Flux $\vec{B} \cdot d\vec{A}$ or $\vec{E} \cdot d\vec{A}$

Gauss's Law for Electricity $\circ \vec{E} \cdot d\vec{A} = \frac{q}{0}$ Faraday's Law $\circ \vec{E} \cdot d\vec{s} = -\frac{d}{dt}$

Gauss's Law for Magnetism $\circ \vec{B} \cdot d\vec{A} = 0$ Ampere's Law $\circ \vec{B} \cdot d\vec{s} = \mu_0 \frac{dq}{dt} + \mu_0 \cdot \frac{d}{dt}$

The Def'n of Inductance $-L\frac{dI}{dt}$ Energy in Inductors $U_L = \frac{1}{2}LI^2$

LR "charging" $I = I_0$ $1 - e^{-\frac{R}{L}t}$ LR "discharging" $I = I_0 e^{-\frac{R}{L}t}$ Energy Density in a B-Field $u_m = \frac{B^2}{2H}$

Physical Constants

$$k = 8.99 \times 10^{9} \frac{N \text{ m}^{2}}{C^{2}}$$
 $_{o} = 8.85 \times 10^{-12} \frac{C^{2}}{N \text{ m}^{2}}$ $e = 1.60 \times 10^{-19} \text{ C}$ $m_{e} = 9.11 \times 10^{-31} \text{kg}$ $\mu_{o} = 4 \times 10^{-7} \frac{T \text{ m}}{A}$

Areas and Volumes

sphere:
$$A = 4$$

$$V = \frac{4}{3} r^3$$

sphere:
$$A = 4 r^2$$
 $V = \frac{4}{3} r^3$ cylinder: $A = 2 r\ell + 2 r^2$ $V = r^2\ell$

$$V = r^2 \ell$$