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Chapter 29 - Magnetic Fields

Problem Set #8 - due:
Ch 29 - 2, 5, 12, 14, 21, 30, 34, 37, 41, 45, 46, 49, 55, 60, 64, 69

It turns out the hardest thing to understand about magnetism is a simple magnet.  We will start by studying
the force on a current caused by a magnet field.  We'll wait until next chapter to figure out where the
magnetic field comes from.

Lecture Outline
1. The Force Between Currents
2. The Definition of the Magnetic Field
3. The Magnetic Force on a Moving Charge
4. Current Loops in a Constant Field
5. Magnetic Devices

   1. The Force Between Currents
Current Balance
There are similarities between the electric force and the force between wires.
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Could the force between wires just be the electric force?  It would appear not because:
1)Like currents attract and opposite repel, exactly the reverse of the electric force.
2)The current carrying wires are electrically neutral.  They exert no force on a single charge.

It would seem that we must treat the force between current carrying wires as a new force called the
"magnetic force."  It must be noted that, in fact, this force is electrical in nature and Einstein's Theory of
Relativity explains the connection between electricity and magnetism.

We need to establish the force law (analogous to
Coulomb's Rule or Newton's Law of Universal
Gravitation) for this "new" force of magnetism.

Newton's Third Law requires F12 = F21

Guess: F12 ∝ I1, F12 ∝ I2 , F12 ∝
1

r
 and   F12 ∝ l.

  
F m =

µo

2π
I1I2

r
l The Force Between Current Carrying Wires

where the constant µo ≡ 4πx10−7 N

A2 .
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   2. The Definition of the Magnetic Field
Recall the way we defined the electric field.  Instead of thinking of q1 exerting the force on q2, we

think of q1 creating a field and the field exerting the force on q2.

r
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where F 21 = q2 E1.
We can do the same thing with the magnetic field, B.
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r ⇒ I2
21F

l

B1

where   F 21 = I2lB1.

To incorporate the vector nature of forces we need to pick a direction for the magnetic field.  Since   
r 
F  is up

and   
r 
l  is in the horizontal plane along the wire, it is most convenient to choose   

r 
B  into the paper.  Now we

can define the magnetic field vector,

  
r 
F ≡ I

r 
l ×

r 
B The Definition of the Magnetic Field

Note the units: 
  
F[ ] = I[ ] l[ ] B[ ] ⇒ B[ ] =

F[ ]
I[ ] l[ ]

=
N

A ⋅ m

It is convenient to define a new unit 
1 N

A ⋅ m
≡ 1 Tesla = 1T.

A second common unit is 1 Gauss = 1G = 10−4 T .

Currents are the source of the magnetic field.  We will discuss this in detail in the next chapter.  This
chapter will focus on the effect of an applied magnetic field.

Wire & Magnet Demonstration - go over definition of magnetic field and r.h.r.

    Example        1:     An 0.100T magnet has a field that points upward.  The pole faces have a 2.00cm

diameter.  Find the force on a 5.00A current flowing eastward.

Use the definition of the magnetic field   
r 
F ≡ I

r 
l ×

r 
B .

Since the wire is perpendicular to the magnetic field   F = IlB.

Since the pole faces are 2.00cm in diameter this is the length of the
wire that feels the field.  F = (5.00)(0.0200)(0.100) = 0.0100N.

The force is southward by the right hand rule.

N

S
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   3. The Magnetic Force on a Moving Charge

The force on a current carrying wire is   
r 
F ≡ I

r 
l ×

r 
B .  The current is

composed of individual charges.  We want to know the magnetic
force on a single charge.  Recall the definition of current density,

  
j ≡

I

A
⇒ I = jA ⇒

r 
F = jA

r 
l ×

r 
B .

Using the expression for the drift velocity,

  j = nqυ ⇒
r 
F = nqυA

r 
l ×

r 
B .

Inserting the free electron density 
  
n ≡

N

vol
=

N

Al
⇒

r 
F =

N

Al
qυA

r 
l ×

r 
B = Nqυˆ l ×

r 
B = Nq

r 
υ ×

r 
B .

The force on a single charge is then,

The Magnetic Force on a Charged Particle  
r 
F = q

r 
υ ×

r 
B 

    Example        2:     A 2.00keV electron is fired northward into a uniform upward 0.100T magnetic field.

(a)Find the force on the electron and (b)Describe its motion.

(a)The definition of kinetic energy K = 1

2
mυ2 ⇒ υ =

2K

m

 υ =
2K

mc2

 
 
  

 
 c =

2(2000eV)

511x103eV

 
 
  

 
 (3.00x108 m

s) = 2.65x107 m
s

The force on a charged particle in a magnetic field is   
r 
F = q

r 
υ ×

r 
B .

Since   
r 
υ  is perpendicular to   

r 
B , F = (1.60x10−19)(2.65x107 )(0.100) = 4.24x10−13N .

The force is westward by the right hand rule.

(b)The force on a charged particle in a magnetic field is always

perpendicular to the velocity.  This means that the motion must be

circular and since no work can be done it must be uniform circular

motion.

The radius can be found by applying Newton's Second Law,

  
Σ

r 
F = m

r 
a ⇒ qυB = m

υ2

r
⇒ r =

mυ
qB

=
(9.11x10−31)(2.65x107)

(1.60x10−19)(0.100)
= 1.51mm

Beyond the Mechanical Universe (vol. 34 Ch 35)

q υ

q υ q υ

q υA

I

l

x(E)

y(N)

z(up)

B
F

υ

e υ

F

E

N



Physics 4B Lecture Notes

29-4

    Example        3:     Suppose the electron in example 2 was fired at 10.0˚ above horizontal.  Describe the

motion.

The force on a charged particle in a magnetic field is   
r 
F = q

r 
υ ×

r 
B  but

now   
r 
υ  is not perpendicular to   

r 
B  so,

   
r 
F = −e(υcos10˚ˆ j +υ sin10˚ˆ k )× Bˆ k = −eυBcos10˚ˆ i .  Since   

r 
υ  is still

perpendicular to   
r 
F we will still have uniform circular motion, but the

tangential speed will be υ cos10˚.  Using the Second Law again,

  
Σ

r 
F = m

r 
a ⇒ qυtB = m

υt
2

r
⇒ r =

mυ t

qB
= 1.51mm ⋅ cos10˚= 1.49mm .

Since there is no force along the z-direction, the z-component of velocity

will remain constant.  The resulting motion is helical.  The "pitch" of the

helix can be found from, p = vzT = vsin10˚ ⋅
2πr

vcos10˚
= 1.65mm.

Charged particles generally spiral around magnetic field lines.

This phenomena is responsible for the "Northern Lights."

   4. Current Loops in a Constant Field

A uniform magnetic field points along the z-direction.  An arbitrarily shaped
current loop is placed in the field.  Let's find the net force on the loop.  The force,
dF, on a small segment of the loop, dl, is given by the definition of magnetic

field,   d
r 
F = Id

r 
l ×

r 
B .  The total force on the loop is then, 

  
r 
F ≡ Id

r 
l ×

r 
B ∫ .

An arbitrary segment is given by   d
r 
l = dxˆ i + dyˆ j + dzˆ k  and the magnetic field is

  
r 
B = Bˆ k .

The cross product is, 

  

d
r 
l ×

r 
B =

ˆ i ˆ j ˆ k 

dx dy dz

0 0 B

= Bdyˆ i − Bdx̂  j .  The total force on the loop is

  

r 
F = d

r 
F ∫ = I Bdyˆ i ∫ − Bdx̂  j ∫( ) = IB ˆ i dy∫ − ˆ j dx∫( ) ⇒

r 
F = 0  for any shaped loop in a constant magnetic

field.

What about the torque on the loop?  The book wimps out and does a square

loop.  We're tough, so let's do a circular loop of radius, a.  The loop will be in

the x-y plane and B is in the x-z plane and angle θ from the z-axis.  This

geometry means no loss of generality.

The definition of torque is   
r 
τ ≡

r 
r ×

r 
F , so the torque   d

r 
τ  about the center of the

loop on a small segment   d
r 
l  caused by the force   d

r 
F = Id

r 
l ×

r 
B  must be,

  d
r 
τ =

r 
r × d

r 
F =

r 
r × Id

r 
l ×

r 
B ( ) .

x(E)

y(N)

z(up)

B
F υ
10˚

z

B

p

B

dl
dF

x
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B
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x

y

z
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The three vectors we need are   
r 
r = acosφˆ i + asin φ̂  j , 

  
d
r 
l = adφ − sin φˆ i + cosφˆ j ( )

and 
  
r 
B = B sinθˆ i + cosθˆ k ( ) .

  

d
r 
l ×

r 
B = aBdφ

ˆ i ˆ j ˆ k 

− sin φ cos φ 0

sin θ 0 cosθ

  
d
r 
l ×

r 
B = aBdφ cosθ cosφˆ i + cosθsin φ̂  j − sinθ cosφˆ k ( )

  

d
r 
τ =

r 
r × Id

r 
l ×

r 
B ( ) = Ia2Bdφ

ˆ i ˆ j ˆ k 

cosφ sinφ 0

cosθ cosφ cosθsinφ − sinθ cosφ

  
d
r 
τ = Ia2Bdφ − sinθ cosφsin φˆ i + sinθ cos2 φ̂  j ( )

  

r 
τ = Ia2Bsinθ −ˆ i cosφ sinφdφ

0

2π
∫ + ˆ j cos2 φdφ

0

2 π
∫ 

 
 
 = Ia2Bsin θ −0ˆ i +πˆ j ( ) = Iπa2Bsin θˆ j 

If we make the following definition,

  
r 
µ ≡ I

r 
A The Defintion of Magnetic Dipole Moment

Then we can write the torque on the dipole as,

  
r 
τ =

r 
µ ×

r 
B Torque on a Magnetic Dipole

This equation is similar to the result for the torque on an electric dipole.  By using this analogy we can

write the potential energy of a magnetic dipole in a magnetic field as,

  U = −
r 
µ •

r 
B Potential Energy of a Magnetic Dipole

Beyond the Mechanical Universe (vol. 34 Ch 14)

   5. Magnetic Devices
a) Velocity Selector
Particles of mass m and charge q move at a speed υ into a region
with a vertical E-field and a horizontal B-field as shown.  It turns
out that there will be only one velocity that will allow the particles
to be undeflected by the fields.  It can be found by using the
Second Law,   Σ

r 
F = m

r 
a ⇒ Fm − Fe = ma .  Apply the definition of

E-field and the magnetic force on a moving charge,
qυB − qE = ma.  For the undeflected particles,

a = 0 ⇒ qυB − qE = 0 ⇒ υ =
E

B
.

dl

x

y

φ

a dφ

dl
x

y

φ

q υ

Fe E

BmF
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    Example         4:     A mass spectrometer requires charged particles traveling at 2.00x105m/s.  The

magnetic field in the device is 0.500T.  Find the potential difference across the plates of the

velocity selector given their separation is 0.800cm.

Applying the Second Law, 
  
Σ

r 
F = m

r 
a ⇒ qυB − qE = 0 ⇒ υ =

E

B
.

Between parallel plates, E =
V

d
.

Finally, υ =
E

B
=

V

Bd
⇒ V = Bυd = (0.500)(2.00x10 5)(8.00x10−3) = 800V

b)Mass Spectrometer

    Example        5:     Singley charged chlorine atoms of

mass 35 and 37 travel at 2.00x105m/s as they

enter the 0.500T field.  Find their separation at

the detector.

Starting with the Second Law and assuming

uniform circular motion,

 
  
Σ

r 
F = m

r 
a ⇒ qυB = m

υ2

r
.  Since different masses will have different radii, r1 =

m1υ
qB

 and

r2 =
m2υ
qB

.  The separation at the detector is the difference in the diameters,

d = 2 r2 − r1( ) = m2 − m1( ) 2υ
qB

= 2(1.67x10−27)
2(2.00x105 )

(1.60x10−19)(0.500)
= 1.67cm

c)Galvanometer

Large Galvanometer

A galvanometer measures current by allowing the current to flow through a coil of

wire creating a magnetic dipole.  The coil is placed in a magnetic field of the proper

shape so that the torque doesn't depend on the angle the loop makes with the

horizontal.  The torque on a dipole is,   
r 
τ =

r 
µ ×

r 
B ⇒ τ = µB.  In terms of the

magnetic moment of a loop of N coils, τ = NIAB.  Notice that this is linear in the

current (Twice the current produces twice the torque).

q υ

B

q

r

Vacc

velocity
selector

detector

accleratoraccelerator

N S
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d)Hall Probe
Bring a Hall Probe

The Hall Effect is the first experiment we have encountered that can

actually detect the sign of the charge carriers.  When a voltage V is applied

to the sample, a current I will flow downward (electrons flow upward).  If

positive charges were flowing downward they would deflect to the right.

Negative charges flowing upward would also deflect to the right.  So the

sign of the charges can be determined by which kind of charge moves to

the right.

The Hall Probe shown here can be used to find the strength of a magnetic field.  The magnetic force on the
electrons that bends them to the right is,   

r 
F = q

r 
υ ×

r 
B ⇒ F = eυB where υ is the drift velocity which is

related to the current density j = neυ ⇒
I

wt
= neυ ⇒ υ =

I

newt
.  The force can be thought of as arising

from the an effective electric field F = eυB ⇒ eEeff = eυB ⇒ Eeff = υB.  This field is related to the "Hall

Voltage" Eeff = υB ⇒
VH

w
= υB .  Combing this with the velocity equation and solving for the field,

V H

w
=

IB

newt
⇒ B = net( ) VH

I

e)Cyclotron

A cyclotron is a system designed to accelerate particles such as a proton

to high speeds.  It consists of two half cylinders with an alternating

potential difference across the gap that separates them.  A magnetic

field causes the protons to move in circular paths.  During the time the

proton is inside one of the halves it doesn't accelerate.  It is only when

it crosses from one side to the other that it feels the potential difference.

During the time the proton is inside one of the halves, the sign of the

voltage is switched so that when it gets back to the gap it is again

accelerated.

    Example        6:     Find the frequency at which the voltage must alternate in terms of the mass m, the

charge q, and the field B.

The frequency must be the reciprocal of the time it takes the particles to complete an orbit because

the voltage must go through one complete cycle during this time.  This time can be found starting

with the Second Law, 
  
Σ

r 
F = m

r 
a ⇒ qυB = m

υ2

r
⇒ υ =

qBr

m
 and using the definition of velocity,

υ =
2πr

T
⇒

2πr

T
=

qBr

m
⇒ f ≡

1

T
=

qB

2πm
.  Notice that the radius of orbit cancels out, which

makes the power supply easier to construct.

B

VH

w

t

V
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f)Stereo Speaker

Bring a speaker and low frequency amp

A magnet is mounted to the frame of the speaker and a coil

of wire is mounted to the cone.  The current from the

amplifier is sent through the coil.  When the current is one

direction the force on the coil is one direction.  When the

current reverses, the force on the coil reverses.  The

resulting oscillatory motion of the cone creates the sound

waves.

    Chapter 29 - Summary

The Force Between Current Carrying Wires 
  
F m =

µo

2π
I1I2

r
l

The Definition of the Magnetic Field   
r 
F ≡ I

r 
l ×

r 
B 

The Magnetic Force on a Charged Particle   
r 
F = q

r 
υ ×

r 
B 

The Definition of Magnetic Dipole Moment   
r 
µ ≡ I

r 
A 

Torque on a Magnetic Dipole   
r 
τ =

r 
µ ×

r 
B 

Potential Energy of a Magnetic Dipole   U = −
r 
µ •

r 
B 

cone

coil

magnet


