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Chapter 31 - Induction and Inductance

Problem Set #10 - due:
Ch 31 - 1, 5, 11, 28, 35, 43, 51, 59, 70, 74, 83, 100

Lecture Outline
1. Faraday's Law of Induction
2. Motors and Generators
3. The Meissner Effect and Superconductivity
4. The Definition of Mutual Inductance
5. The Definition of Self Inductance
6. The LR Circuit
7. Energy Storage in Inductors and B-fields

Magnet, wire, coil, & galvanometer
(moving the coil vs. moving the magnet - it can't matter!)

   1. Faraday's Law of Induction

Moving a wire through the field causes the charges within the wire to feel an

upward magnetic force,   
r 
F = q

r 
υ ×

r 
B ⇒ F = qυB.  Positive charges accumulate at

the top of the wire and negative charges at the bottom.  This creates a downward

electric field in the wire.  The net force on the charges is given by the Second

Law, ΣF = ma ⇒ qυB − qE = ma.  Charges move upward until a=0.  The

electric field is then, E = υB.

If the wire was rolling along some rails connected to a

voltmeter, the meter would give a reading due to the electric

field in the wire.  This voltage can be found from the E-field,

  
∆V = −

r 
E •∫ d

r 
s ⇒ V = El ⇒ V = Blυ .

Moving through a magnetic field creates a potential difference

just like  a battery would.

    Example        1:     Estimate the induced voltage across the 40.0m wingspread of an airplane traveling

800km/h (222m/s) perpendicular to the earth’s magnetic field of 50.0µT.

Using the Second Law when the charges in the wing have reached

equilibrium, ΣF = ma ⇒ qυB − qE = 0 ⇒ E = υB .

The induced voltage can be found from the E-field,

  
∆V = −

r 
E •∫ d

r 
s ⇒ V = El ⇒ V = Blυ .

  V = Blυ ≈ (50.0µT)(40.0m)(222m/s) ≈ 0.444V
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The other way to look at this is to think about it in terms of the

changing magnetic flux in the loop.  The potential difference

between the ends is,   V = Blυ .  Using the definition of

velocity, 
  
V = Bl

dx

dt
= B

d

dt
lx( ) = B

dA

dt
=

d

dt
BA( ) =

dΦB

dt
.

This explains why moving the magnet creates a voltage just like

moving the wire does.  If the wire has N turns then the voltage

is N times bigger.  Notice that the current flows in a direction such as to fight the change in the field.  This

is called "Lenz's Rule."  Putting all this together gives Faraday's Law,

ε = −N
dΦB

dt
Faraday's Law

where we have defined the magnetic flux as,

  
ΦB ≡

r 
B • d

r 
A ∫      The Definition of Magnetic Flux

Beyond the Mechanical Universe (vol.  37 Ch 11,12,15,18,21,28)

    Example        2:     A small loop of N turns and area A is in the same plane as a
long straight wire carrying a current i = io sinωt .  Find the induced voltage

in the loop as a function of time and show that the peak-to-peak voltage is

proportional to the peak magnetic field.

From the previous chapter we know the field due to a long straight wire is, B =
µoi

2πr
, where r is

the distance from the wire to the center of the loop.

The loop is small enough that at any given time the field is approximately constant.  Therefor, the

magnetic flux through the small loop is, 
  
ΦB ≡

r 
B • d

r 
A ∫ = BdA = B dA∫∫ = BA =

µoi

2πr
A.

Applying Faraday's Law,

ε = −N
d

dt

µoi

2πr
A

 
 

 
 = − N

µo

2πr
A

di

dt
= −

µoNA

2πr

d

dt
io sinωt( ) = −

µoNA

2πr
ioω cosωt = −

µoio

2πr
NAωcosωt

The peak-to-peak voltage must be twice the maximum when cosωt=1,

εpp = 2
µoio

2πr
NAω = 2BoNAω

 
where

 
Bo =

µoio

2πr
 is the peak field due to the wire.

This is how the magnetic field probe you used in lab works!  You can now see that the peak-to-

peak voltage is proportional to the field assuming the frequency is kept constant.

V υ

dx

l

A

i(t)B
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   2. Motors and Generators

A motor and a generator are physically the same device.  A motor converts electrical energy into
mechanical energy while a generator converts mechanical energy into electrical energy.

     Motors:   

A motor is constructed from loop of current carrying wire in a magnetic field.  It

works because the loop which has a magnetic dipole moment  µ feels and torque

in the direction  of the magnetic field B.  The dipole gains momentum as it

rotates to try to align with the field.  Just as is crosses the field the current in it is

reversed as is its dipole moment which again tries to align with the field.  This

continual swapping of the current direction causes a continuous rotation of the

coil converting electrical energy into the mechanical energy of rotation.

Demonstrate a motor

     Generators:   

A generator is just a motor running backwards.  Mechanical energy is used to turn the coil.  This energy

can come from water falling over a dam for instance.  The changing magnetic flux induces a voltage and

therefor a current in the coil according to Faraday's Law.  The generator converts the mechanical energy

into electrical energy.

Demonstrate with a generator and galvanometer

    Example        3:     A coil of N turns and area A is rotated at a frequency f about an axis perpendicular to a

magnetic field B.  Find (a)the induced voltage as a function of time, (b)the peak voltage and (c)the

rms voltage.

(a)When the coil makes an angle θ with the magnetic field the flux

through the coils is,

  
ΦB ≡

r 
B • d

r 
A ∫ = Bcos θdA = B∫ cosθ dA∫ = BAcosθ .

If θ=0 at t=0 then θ = 2πft  and ΦB ≡ BA cos2πft .  The induced

voltage can be found from Faraday's Law,

 ε = −N
d

dt
BAcos2πft( ) = NBA2πf sin2πft .

(b)The peak voltage occurs when sin2 πft = 1 and its value is
εo = NBA2πf .

(c)rms means    r   oot      m     ean    s   quare or the square root of the average value of

the square of the voltage.  Using the definition of average,

i
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ε2 ≡
ε2dt

0

T

∫
dt

0

T

∫
=

εo
2 sin2 2πftdt

0

T

∫
dt

0

T

∫
=

εo
2 sin2 udu

0

2 π
∫

2πfT
=

εo
2 π

2π
=

εo
2

2

ε rms ≡ ε2 =
εo

2

2
⇒ ε rms = 1

2
εo = 1

2
NBA2 πf

    Example        4:     A coil of 1000 turns and 12.0cm radius flips 180˚ about an axis that points northward.

The coil has a resistance of 4.80Ω.  The vertical component of Earth's magnetic field is 46.0µT.

Find the total charge that flows when the coils flips.

Notice that the horizontal component of Earth's field contributes no

flux.  All the flux through the loop is due to the vertical component.

Faraday's Law requires, ε = −N
dΦB

dt
.

The charge that flows is related to Ohm's Rule, ε = IR =
dq

dt
R.

Setting the voltages equal,
dq

dt
R = −N

dΦB

dt
⇒ Rdq = −NdΦB ⇒ R dq

0

Q

∫ = −N dΦBΦ o

Φ
∫ ⇒ RQ = −N Φ− Φo( )

The initial flux is just the product of the vertical component of the field and the area.  The final flux

in just the opposite of the initial flux, RQ = −N −Bvπr2 − Bvπr2( ) = 2NBvπr2 .

⇒ Q =
2NBvπr2

R
=

2(1000)(46.0x10−6)π(0.120)2

4.80
= 8.67x10−4 C .

   3. The Meissner Effect and Superconductivity

picture, floating magnet toy, coil & power supply, high-TC superconductor

Why does a floating magnet imply superconductivity?
Two magnets repel each other, but the lower magnet can be replaced with a
current carrying coil. The floating magnet implies a current in the
superconductor.  Since there is no power source, and the current lasts
indefinitely, the material is conducting without resistance and is therefor a
superconductor.

How does the current get there to begin with?
If you bring the magnet toward the superconductor, Faraday's Law explains
the induced current just like moving the magnet around near a coil.  In
ordinary conductors these currents die away due the resistance.  The currents
in the superconductor continue.

The Meissner Effect
Set the magnet on a warm chunk of superconducting material and nothing
happens because the material is only superconducting at low temperatures.  When you cool the sample, the
magnet lifts off and hovers above the superconductor.  This is not explained by Faraday's Law, but it is
called "The Meissner Effect."  It is caused by the fact that superconductors exclude magnetic fields just like
ordinary conductors exclude electric fields.  In order for the superconductor to keep the field inside zero, it
must set up a current that cancels out the field due to the magnet.  These opposing fields cause the magnet
to hover.

B

Bh

Bv

N

Superconductor

current

S
N
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   4. The Definition of Mutual Inductance

If a coil carrying a current I1 is near a coil with N2

turns, the magnetic field caused by the first coil will

create a flux through the second coil.  If the current in

the first coil changes, the flux through the second coil

will change and according to Faraday's Law a voltage

will be induced in the second coil.  The relationship

between the voltage induced in the second coil and the

rate of change of current in the first coil is called the "Mutual Inductance."

To find voltage induced in the second coil use Faraday's Law, ε2 = −N 2
dΦ21

dt
.

The flux through coil 2 caused by coil 1 can be found from the definition of flux, 

  
Φ21 =

r 
B 1 • d

r 
A 2

coil 2
∫ .

The field caused by coil 1 can be found by the Biot-Savart Rule, 

  

r 
B 1 =

µoI1

4π
d
r 
s × ˆ r 

r2
coil 1
∫ .

The flux can now be written, 

  
Φ21 =

µoI1

4π
d
r 
s × ˆ r 

r2
coil 1
∫ • d

r 
A 2

coil 2
∫ =

I1

N 2
M21

where 

  
M21 =

µoN2

4π
d
r 
s × ˆ r 

r2
coil 1
∫ • d

r 
A 2

coil 2
∫ .  Notice that M21  only depends on the shapes of the coils and

the relative positions not on the current in coil 1 or on time.

Putting the flux into Faraday's Law, ε2 = −N 2
d

dt

I1
N 2

M21

 
 
  

 
 ⇒ ε2 ≡ −M21

dI1

dt
.  This equation is

usually called the definition of mutual inductance,

 
ε2 ≡ −M21

dI1

dt
The Definition of Mutual Inductance

   5. The Definition of Self Inductance

Beyond the Mechanical Universe (vol. 37 Ch 25)

There is no reason that coil 1 and coil 2 have to be separate.  They could be part of a solenoid for instance.
In this case we call the quantity that relates the induced voltage to the rate of change of current the "Self
Inductance" and we use the symbol L instead of M.

The Definition of Self Inductanceε ≡ −L
dI

dt

I1
N2
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    Example        5:     A solenoid has 1000 turns of wire.

It is 10.0cm long and 1.00cm in diameter.

Estimate the self inductance.

Combining Faraday's Law and the definition of

self inductance,

ε ≡ −L
dI

dt
= −N

dΦ
dt

⇒ LdI = NdΦ ⇒ LI = NΦ ⇒ L =
NΦ

I
.

The flux can be found from its definition by using the field due to the solenoid,

  
Φ ≡

r 
B • d

r 
A 

solenoid
∫ = µo

N

l
IdA

solenoid
∫ = µo

N

l
I dA

solenoid
∫ = µo

N

l
Iπ

D2

4
.  The self inductance is now,

  
L =

N

I
µo

N

l
Iπ

D2

4

 

 
  

 
 =

µoN2 πD2

4l
=

4πx10−7( )(1000)2 π(0.0100)2

4(0.100)
= 9.87x10−4 T⋅m2

A = 987µH

Note that the self inductance depends on geometry not on current.  Also note the units are Henries.

   6. The LR Circuit

When the switch is first closed the current is zero, but changing rapidly.

Therefor, all of the voltage will be dropped on the inductor and none on the

resistor.  After a long time, the current will build up to the point where all the

voltage is dropped on the resistor and therefor the current stops changing.  In

between we can use the loop theorem to find the current in the circuit at any

time, V + VL + VR = 0 ⇒ ε − L
dI

dt
− IR = 0 .  Separating the equation and setting up the integral,

dI

dt
=

ε − IR

L
⇒

dI

ε − IR0

I

∫ =
dt

L0

t

∫ .  The left hand side can be done by choosing

u = ε − IR ⇒ du = −RdI .  Now we can do the integral,

−
1

R

du

uI=0

I

∫ =
dt

L0

t

∫ ⇒ ln(ε − IR) 0
I = −

R

L
t ⇒ ln(

ε − IR

ε ) = −
R

L
t ⇒ I =

ε
R

1 − e
−

R

L
t 

 
 

 

 
 .

Since 
ε
R

 is the peak current in the circuit, it is convenient to write the current as,

I = Io 1 − e
−

R

L
t 

 
 

 

 
 "Charging" LR Circuit

B

L

Rε
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The current as a function of time for a "charging" LR circuit is

shown at the left.  The word charging is used, but keep in mind

that the inductor is storing flux (or field, or energy) not charge like

a capacitor would.

For a "discharging" LR circuit the initial current would be large

enough for all the voltage to be dropped across the resistor.  As

the resistor removes energy from the circuit the current begins to

drop toward zero.  The loop theorem can again be used to find the

current as a function of time.  The result is,

I = Ioe
−

R

L
t

"Discharging" LR Circuit

The graph of current versus time is shown at the left.

    Example        6:     The inductor from example 5 is made of copper.  Find (a)its resistance, (b)the

equilibrium current when it is connected to a 1.50V battery and (c)the time required for it to reach

99% of this equilibrium current.

(a)Using the definition of resistance, 
  
R ≡ ρ

l
A

= ρ
πDN

πa2 where a is the

radius of the wire.  Assuming the coils are close packed   2aN = l
where l is the length of the solenoid.  Solving,

  

R = ρ / π DN

/ π l
2N( )2 =

4ρDN3

l2 =
4(1.7x10−8 )(0.0100)(1000)3

(0.100)2 = 68.0Ω .

(b)After a while the current will build up.  It can grow until all the voltage is dropped across the

resistor.  According to Ohm's Rule, ε = Io R ⇒ Io =
ε
R

=
1.50V

68.0Ω
= 22.1mA.

(c)Starting with the equation for a charging LR circuit I = Io 1 − e
−

R

L
t 

 
 

 

 
  and solving for t,

I

Io
= 1 − e

−
R

L
t

⇒ e
−

R

L
t

= 1 −
I

Io
⇒ −

R

L
t = ln 1 −

I

Io

 
 
  

 
 ⇒ t = −

L

R
ln 1−

I

Io

 
 
  

 
 .

Putting in the numbers, t = −
9.87x10−4

68.0
ln 1 − 0.99( ) = 66.8µs

I

t

oI

I

oI

t

L
ε Rint
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   7. Energy Storage in Inductors and B-fields

The energy stored in the inductor can be found by starting with the loop theorem,

V L + VR + V C = 0 ⇒ L
dI

dt
+ IR +

Q

C
= 0.

Multiplying through by the current, LI
dI

dt
+ I2R + I

Q

C
= 0.  The middle term is the power

consumed by the resistor.  It's a good guess to assume the other terms are the power flow
into the capacitor and the inductor.  Since we know the answer for the capacitor let's start
there,

P C = I
Q

C
⇒

dUC

dt
=

dQ

dt

Q

C
⇒ dU C0

UC∫ =
1

C
QdQ

0

Q

∫ ⇒ UC = 1
2

Q2

C
.

Since this is the right answer, we should play the same game with the inductance term,

P L = LI
dI

dt
⇒

dUL

dt
= LI

dI

dt
⇒ dU L0

UL∫ = LIdI
0

I

∫ ⇒ UL = 1
2 LI2 .

U L = 1
2 LI2 Energy Storage in an Inductor

    Example        7:     For the inductor circuit of example 6 (L=987µH, R=68.0Ω, ε=1.50V) find the

energy stored when the current reaches equilibrium.

From example 2 the equilibrium current is 22.1mA.  Using the energy stored in the inductor,
U L = 1

2 LI2 = 1
2 (987x10−6 )(0.0221)2 = 0.241µJ .

If we associate this energy with the magnetic field created by the inductor instead of associating it with the

inductor itself, we can find the energy density in magnetic fields, 
  
um ≡

U

vol
=

1
2 LI2

1
4 πD2l

.  Using the

inductance of a solenoid found in example 1,

  
L =

µoN2 πD2

4l
⇒ um =

1
2

µoN2πD2

4l

 
 
  

 
I2

1
4 πD2l

=
1
2 µoN2 I2

l2 = 1
2µo

µo NI

l
 
 

 
 

2

.

The stuff in parentheses is the magnetic field due to the solenoid so,

um =
B2

2µo
Energy Density in a Magnetic Field

Recall the energy density in the electric field is given by the similar expression, ue = 1
2 εoE2 .

    Example         8:     In some region of space the electric field and the magnetic field give equal

contributions to the energy density.  Find the ratio of E to B.

Given, um = ue ⇒
B2

2µo
= 1

2 εoE2 ⇒ E2

B2 =
1

µoεo
⇒

E

B
=

1

µoεo
.

Putting in the numbers, 
1

µoεo
=

1

(4πx10−7 )(8.85x10−12)
= 3.00x108 m / s .

The speed of light! Hmmm.

L

C

R
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    Chapter 31 - Summary

Faraday's Law ε = −N
dΦB

dt
The Definition of Magnetic Flux 

  
ΦB ≡

r 
B • d

r 
A ∫

The Definition of Mutual Inductance ε2 ≡ −M21
dI1

dt

The Definition of Self Inductance ε ≡ −L
dI

dt

The LR Circuit: "charging" I = Io 1 − e
−

R

L
t 

 
 

 

 
       "discharging" I = Ioe

−
R

L
t

Energy Storage in an Inductor U L = 1
2 LI2

Energy Density in a Magnetic Field um =
B2

2µo


