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Chapter 34 - Electromagnetic Waves

Problem Set #13 - due:
Ch 34 - 2, 6, 8, 12, 16, 17, 20, 25, 28, 35, 45, 47

Since Maxwell's Equations summarize everything we know about electricity and magnetism, they should
lead us to an understanding of the properties of electromagnetic waves.

Lecture Outline
1. Producing and Detecting Electromagnetic Waves
2. Properties of Electromagnetic Waves
3. Maxwell's Equations and Waves in Free Space
4. The Electromagnetic Spectrum
5. The Poynting Vector
6. Radiation Pressure and Momentum Transfer

   1 .         Producing       and        Detecting        Electromagnetic         Waves
laser and microwave generator & detector

Electromagnetic waves can be produced by an
oscillating circuit connected to an antenna as shown
at the left.  The oscillating charges in the antenna set
up electric and magnetic fields.

EM waves can be detected with an antenna as shown at the
right.  The charges in the antenna are forces to oscillate by
the EM waves and the resulting voltages can be detected with
a voltmeter.

The waves are initially produced by the charges on the antenna.  The charge
itself produces an E-field and the motion of the charges (current) produces a B-field as
shown at the left.

Later when the current switches directions, the
fields also switch directions near the antenna.  However,
the changing fields away from the antenna induce more
fields according to Maxwell’s Laws of Electricity and 

Magnetism as shown at the right.

The amazing thing is that these
field are self sustaining.  The changing
magnetic field producing an electric
field and the changing electric field
produces a magnetic field.  This is the
nature of the EM waves shown at the left.
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   2 .         Properties       of        Electromagnetic         Waves

• They continue to travel after the source is turned off.
• They travel through empty space.
• They always travel at the same constant speed.
• The electric field is always perpendicular to the magnetic field.
• The velocity is perpendicular to both the electric field and the magnetic field.
• The ratio of the peak electric field to the peak magnetic field equals the speed of the waves.

There are a couple of ways to represent these waves that illustrate these properties.

The electric and magnetic fields
oscillate in amplitude in space and
they travel to the right as time
goes on.  This shows the varying
strength of the fields, but it
doesn't illustrate the fact that these
waves are for all practical
purposes infinite in the x and y
direction.

This illustration indicates the infinite

extent in the x and y directions but it is

hard to visualize that things are waving.

Regardless of how you visualize the

waves they must be explained by

Maxwell's Equations.

   3 .         Maxwell's        Equations       and         Waves       in        Free        Space

Maxwell's Equations in empty space (free of charges and currents) are:

Gauss's Law for Electricity
  

r 
E • d

r 
A ∫ = 0 Gauss's Law for Magnetism

  
r 
B • d

r 
A ∫ = 0

Faraday's Law of Induction
  

r 
E • d

r 
s ∫ = −

dΦB

dt
Ampere's Law

  

r 
B • d

r 
s ∫ = µoεo

dΦe

dt

According to Faraday's Law changing magnetic fields make electric fields and according to Ampere's Law

changing electric fields make magnetic fields.  This is the essence of the propagation of electromagnetic

waves.  The fields produce each other as they change in space and time.  All the properties of EM waves

listed above can be explained by applying Maxwell's Equations.
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Consider a rectangular path in the x-z plane of height h and width dz as

shown.

Now apply Faraday's Law, 
  

r 
E • d

r 
s ∫ = −

dΦB

dt
⇒

r 
E • d

r 
s ∫ = −

d

dt

r 
B • d

r 
A ∫ .

The path integral only has contributions along vertical portions of the path,

  
r 
E • d

r 
s ∫ = (E + dE)h − Eh = hdE .

The flux integral can be done because the B-field is nearly constant over the

rectangle,  
  

r 
B • d

r 
A ∫ = Bhdz .

Putting these results into Faraday's Law, / h dE = −
d

dt
B/ h dz( ) .  The only thing

changing with time is the B-field so, dE = −dz
dB

dt
⇒

dE

dz
= −

dB

dt
.  If this

were done with total mathematical rigor the derivatives are actually partial

derivatives.  So the relationship between E and B from Faraday's Law is,
∂E

∂z
= −

∂B

∂t
.

Now consider a rectangular path in the y-z plane of length l and width dz
as shown.  Apply Ampere's Law,

  

r 
B • d

r 
s ∫ = µoεo

dΦe

dt
⇒

r 
B • d

r 
s ∫ = µoεo

d

dt

r 
E •d

r 
A ∫ .

The path integral only has contributions along portions parallel to the

y-axis,  
  

r 
B • d

r 
s ∫ = Bl − (B + dB)l = −ldB.

The flux integral can be done because the E-field is nearly constant over

the rectangle,  
  

r 
E • d

r 
A ∫ = Eldz .

Putting these results into Ampere's Law,

 
  
−ldB = µoεo

d

dt
Eldz( ) ⇒ −

dB

dz
= µoεo

dE

dt
.  Because only the E-field is

changing with time.  Again, these are actually partial derivatives.  So the

relationship between E and B from Ampere's Law is, 
∂B

∂z
= −µ oεo

∂E

∂t
.

In summary, 
∂E

∂z
= −

∂B

∂t
 and 

∂B

∂z
= −µ oεo

∂E

∂t
.

Taking the derivative with respect to z of the first equation and the derivative with respect to t of the second

equation gives, 
∂2E

∂z2 = −
∂2B

∂z∂t
 and 

∂2B

∂z∂t
= −µoεo

∂2 E

∂t2 .

Combing the results produces, 
∂2E

∂z2 = µoεo
∂2E

∂t2 .  This is the "Wave Equation."  There is a similar wave

equation for the magnetic field.  So Maxwell's Equations are consistent with the possibility of self
sustaining transverse waves.

Beyond the Mechanical Universe (vol. 39 Ch 23-27, 34-37)
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    Example        1:     Show that E = Em sin(kz −ω t) is a wave moving in the positive z direction.  Express

k and ω in terms of the wavelength, λ, and the frequency, f and find their relationship to the

velocity.

A graph of E vs. z at t=0 is shown.  This is like a photograph of the wave.

E

z

λ

λ

Notice that z=λ when kz −ω t = 2π ⇒ kλ− 0 = 2π ⇒ k =
2π
λ

.  k is called the “wave number.”

Below is a graph of E vs. t at z=0.  This is created by standing at one place and measuring E at

different times as the wave moves by.
E

t

T

T

Notice that t=T when kz −ω t = 2π ⇒ 0 −ωT = 2π⇒ ω =
2π
T

= 2πf .

Since E is negative after a short time, you can see from the graph of E vs. z that the wave must be

moving to the right.  If you stand at z=0 and wait for one period, then the wave will have traveled

one full wavelength.  The speed of the wave can be found using the definition of speed,

v ≡
∆z

∆t
=

λ
T

= λf .

In terms of ω and k, v = λf =
2π
k

⋅
ω
2π

=
ω
k

.

k ≡
2π
λ

     The Definition of Wave Number

ω
k = λf = c The Frequency-Wavelength Relationship
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    Example         2:     Find the conditions under which E = Em sin(kz −ω t) is a solution to the wave

equation.

The wave equation is 
∂2E

∂z2 = µoεo
∂2E

∂t2 .

Taking the space derivatives, 
∂E

∂z
= kEm cos(kz − ωt)  and 

∂2E

∂z2
= −k2E m sin(kz − ωt) = −k2E

and the time derivatives, 
∂E

∂t
= −ω Em cos(kz −ωt)  and 

∂2E

∂z2
= −ω 2Em sin(kz −ω t) = −ω2E .

Substituting into the wave equation,  −k2E = −µoεoω
2E ⇒

ω
k

=
1

µ oεo
.

From example 1 we know this ratio must be the speed of the waves,

v =
1

µ oεo

= 3.00x108 m/s ≡ c , the speed of light.  Light is an EM wave!

In order for EM waves to exist, they must travel at this speed regardless of the frequency or

wavelength.

c =
1

µoε o

The Speed of EM Waves

    Example        3:     Show that any function of kz±ωt is a solution to the wave equation.

The general form of the wave equation is, 
∂2 f

∂z2 =
1

υ2
∂2 f

∂t2 .  Define f (u) ≡ f (kz ±ω t) .

We need the derivatives with respect to z, 
∂ f

∂z
=

∂ f

∂u
⋅
∂u

∂z
=

∂ f

∂u
⋅ k  and

∂2 f

∂z2 =
∂
∂z

∂ f

∂u
⋅ k = k

∂u

∂z
⋅
∂2 f

∂u2 = k2 ∂2 f

∂u2

and with respect to t, 
∂ f

∂t
=

∂ f

∂u
⋅
∂u

∂t
=

∂ f

∂u
⋅ ±ω( )  and

∂2 f

∂t2 =
∂
∂t

∂ f

∂u
⋅ ±ω( ) = ±ω

∂u

∂t
⋅
∂2 f

∂u2 = ω2 ∂2 f

∂u2 .

Plugging into the wave equation, 
∂2 f

∂z2 =
1

υ2
∂2 f

∂t2 ⇒ k2 ∂2 f

∂u2 =
1

c2 ω2 ∂2 f

∂u2 ⇒ ω = ck .  It works!

If any function of kz±ωt is a solution to the wave equation why do we usually discuss solutions of the
form E = Em sin(kz −ω t)  and B = Bm sin(kz −ω t) ?

Fourier's Theorem states f(kz −ω t) = ai sin(k iz −ω i t)
i

∑ .

Any function can be written as a linear combination of sine and cosine waves.
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           Example        4:     Find the ratio of the peak electric field to the peak magnetic field.

Recall that earlier we started with Faraday's Law and considered a path in the x-z plane and got the

relationship, 
∂E

∂z
= −

∂B

∂t
.  Using the waves E = Em sin(kz −ω t)  and B = Bm sin(kz −ω t)  we

get, kEm cos(kz −ω t) = +ωBm cos(kz −ω t ) ⇒
Em

Bm
=

ω
k

= c .

Em = cBm The Ratio of the Peak Fields

All the properties of electromagnetic waves that were stated earlier are consistent with Maxwell's
Equations.

   4 .         The        Electromagnetic        Spectrum
We might suspect that all waves that travel at the speed of light are in fact electromagnetic in nature.  For
the most part this turns out to be true.  The only essential difference between different types of EM waves
is the wavelength (or frequency).
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Discuss: The origin of human vision and the safety of exposure to EM waves (move on to energy).

   5 .         The        Poynting        Vector

Notice that   
r 
E ×

r 
B  point in the direction of the velocity vector.  The magnitude of

  
r 
E ×

r 
B = EB = 1

c E2 = cB2 .  Recall that the energy density in electric and magnetic fields is given by,

u = 1
2 εoE2 + 1

2µo
B2 .  Therefor   

r 
E ×

r 
B  must be related to the energy in the waves.

The exact relationship can be found by finding the total energy deposited by an
EM wave landing on surface in a time dt.  This energy must equal the energy
density in the waves times the volume they occupy,
U = uvol ⇒ dU = udV = uAdz = ucAdt .  Substituting for u,

dU = 1
2 εoE2 + 1

2µo
B2( )cAdt .  The power per unit area is,

dU

Adt
= 1

2 εocE2 + c
2µo

B2( ) .  Using the result from above   
r 
E ×

r 
B = 1

c E2 = cB2

the power per unit area can be written as 
  
dU

Adt
= 1

2 εoc2 r 
E ×

r 
B + 1

2µo

r 
E ×

r 
B ( ) = 1

2 εoc2 + 1
2µo( ) r 

E ×
r 
B .  The

two terms in parentheses are equal because c =
1

µoε o

 so finally, 
  
dU

Adt
= 1

µo

r 
E ×

r 
B .  The Poynting Vector

is defined accordingly,

A

dz=cdt
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r 
S ≡ 1

µo

r 
E ×

r 
B The Definition of the Poynting Vector

The magnitude of the Poynting vector is power per unit area and it points in the same direction as the
velocity.

The instantaneous power per unit area is, S = 1
µo

EB = 1
µo

EmBm sin2 (kz −ω t) .  Often the average power

per unit area is called the “intensity.”  Since the average value of the square of the sine is one half,

I =
Em Bm

2µo

=
Em

2

2µoc
=

cBm
2

2µo

     Intensity of EM Waves

    Example        5:     Sunlight strikes earth with an average intensity of 1400W/m2.  Find the peak electric

and magnetic fields.

The intensity of EM waves is, I =
Em

2

2µoc
⇒ Em = 2µocI = 1060 V

m .

The ratio of the peak fields gives, Em = cBm ⇒ Bm =
Em

c
= 3.53µT .

Discuss: hood of a car in the sun and issues related to solar energy.

    Example        6:     Find the total power radiated by the sun.

There are 1400W/m2 landing on the earth which is 1.50x1011m away.  Since the sun radiates EM

waves uniformly in all directions this intensity will be the same over the surface area of a sphere

that is 1.50x1011m away.

Using the definition of power and the definition of intensity, I ≡
dU

Adt
=

P

A
=

P

4πr2
.

Solving for the power, P = I4πr2 = (1400)(4π)(1.50x1011)2 = 3.96x1026 W .

   6 .         Radiation        Pressure       and        Momentum        Transfer

When EM waves are absorbed by a surface, not only do they deposit
energy, but they transfer momentum as well.  The illustration at the right shows
particles with kinetic energy U = 1

2 mv 2 = 1
2 pv absorbed by a surface, the

momentum transferred can be written as,

p =
2U

v
.

The relationship between the transferred momentum and deposited energy for EM
wave differs from this result by a factor of two.  This is because the definition of
kinetic energy U = 1

2 mv 2  is invalid for objects moving near the speed of light.
For EM waves the answer is,

p =
U

c
The Momentum Transfer for Complete Absorption

A

A
U = 1

2 mv2

p =
2U

v

p =
U

c

U

m

wave
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Usually it is more convenient to talk about the "Radiation Pressure" on a surface.  Pressure is defined as
force per unit area.  Since the force on a surface is equal to the rate at which it collects momentum,

P ≡
F

A
=

dp

Adt
=

dU

cAdt
=

I

c
.

P =
I

c
    The Radiation Pressure for Complete Absorption

For totally reflected waves the momentum transfer and the radiation pressure are just doubled, the same as
for perfectly reflected particles.

    Example        7:     Find the force due to the radiation pressure on a perfectly reflecting automobile hood

1.00m2 in area.

The initial momentum of the incident waves is pi = −
U

c
.

The final momentum of the reflected waves is pf =
U

c
.

The momentum transferred is,   ∆p = pf − pi = 2
∆U

c
⇒

∆p

∆t
=

2

c

∆U

∆t
.

This is the force on the hood of the car.

Since the Poynting Vector is the energy per second per area,
∆p

∆t
=

2

c
IA =

2

3.00x108
(1400)(1.00) = 9.33x10− 6N.

    Chapter       34       -         Summary
The Properties of Electromagnetic Waves

• They continue to travel after the source is turned off.
• They travel through empty space.
• They always travel at the same constant speed.
• The electric field is always perpendicular to the magnetic field.
• The velocity is perpendicular to both the electric field and the magnetic field.
• The ratio of the peak electric field to the peak magnetic field equals the speed of the waves.

The Speed of EM Waves c =
1

µoε o

The Ratio of the Peak Fields Em = cBm

The Definition of the Wave Number k ≡ 2π
λ

The Frequency-Wavelength Relationship ω
k = λf = c

The Definition of the Poynting Vector 
  
r 
S ≡ 1

µo

r 
E ×

r 
B 

The Intensity of EM Waves I =
Em Bm

2µo

=
Em

2

2µoc
=

cBm
2

2µo

The Momentum Transfer for Complete Absorption p =
U

c

The Radiation Pressure for Complete Absorption P =
I

c


