Physics 4B Lecture Notes

Chapter 34 - Electromagnetic Waves

Problem Set #13 - due:
Ch34-2 6,8, 12, 16, 17, 20, 25, 28, 35, 45, 47

Since Maxwell's Equations summarize everything we know about e ectricity and magnetism, they should
lead us to an understanding of the properties of e ectromagnetic waves.

Lecture Outline

1. Producing and Detecting Electromagnetic Waves
2. Properties of Electromagnetic Waves

3. Maxwell's Equations and Waves in Free Space
4. The Electromagnetic Spectrum

5. The Poynting Vector

6. Radiation Pressure and Momentum Transfer

1. Producing and Detecting Electromagnetic Waves
laser and microwave generator & detectaor

EM Wav

Electromagnetic waves can be produced by an
oscillating circuit connected to an antenna as shown
a theleft. The oscillating chargesin the antenna set
up electric and magnetic fields.

transformer

EM waves can be detected with an antenna as shown at the
right. The chargesin the antenna are forces to oscillate by
the EM waves and the resulting voltages can be detected with
avoltmeter.

antenna

EM Waves

The waves are initially produced by the charges on the antenna. The charge
itself produces an E-field and the motion of the charges (current) produces a B-field as
shown at the | eft.

Later when the current switches directions, the
fields also switch directions near the antenna. However,
the changing fields away from the antenna induce more
fields according to Maxwell’ s Laws of Electricity and

Magnetism as shown at the right.

The amazing thing is that these
field are self sustaining. The changing
magnetic field producing an dectric
field and the changing eectric field
produces a magnetic field. Thisisthe
nature of the EM waves shown at the | eft.
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2. Properties of Electromagnetic Waves

» They continueto travel after the source is turned off.

 They travel through empty space.

» They alwaystravel at the same constant speed.

» Thedectric field isaways perpendicular to the magnetic field.

» Thevelocity is perpendicular to both the eectric field and the magnetic field.

* Theratio of the peak eectric field to the peak magnetic field equals the speed of the waves.

There are a couple of ways to represent these waves that illustrate these properties.

The éectric and magnetic fields
oscillate in amplitude in space and
they travel to the right as time
goes on. This shows the varying
strength of the fields, but it
doesn't illustrate the fact that these
waves are for al practica
purposesinfinitein the x and y
direction.

This illustration indicates the infinite

extent inthe x and y directions but it is
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3. Maxwell's Equations and Waves in Free Space

Maxwell's Equations in empty space (free of charges and currents) are:
Gausss Law for Electricity g)E- dA =0 Gausss Law for Magnetism g8 - dA =0

B d

Faraday's Law of Induction Q‘)E ds =- d% Ampere's Law g‘j§ - dS = mye,

F e
dt

According to Faraday's Law changing magnetic fields make electric fields and according to Ampere's Law
changing electric fields make magnetic fields. Thisisthe essence of the propagation of electromagnetic

waves. The fields produce each other as they change in space and time. All the properties of EM waves
listed above can be explained by applying Maxwell's Equations.
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path Consider arectangular path in the x-z plane of height h and width dz as
shown.
Now apply Faraday's Law, E‘)E ds = - dFB b 05 gs = - _d3 dA
y4

The path integral only has contributions along vertical portions of the path,
PE - dS = (E +dE)h - Eh = hdE.

The flux integral can be done because the B-field is nearly constant over the

X1 rectangle, (‘j_5> dA = Bhdz.
h Putting these results into Faraday's Law, WdE = - Ed (Bhdz). The only thing
1/ - o changing with time is the B-field so, dE = - dz a8 p e = - d—B If this
LY E+dE dt dz dt
E , Wwere done with tota mathematica rigor the derivatives are actualy partiad
d dz derivatives. So the relationship between E and B from Faraday's Law is,
fE_ 1B

|4 Tt
Now consider arectangular path in the y-z plane of length ¢ and width dz
asshown. Apply Ampere's Law,

B dézrrbeodzte P ¢B- d"s:mbeogt(‘)e_- dA .
The path integral only has contributions along portions parallel to the
y-axis, ¢p- ds=B/- (B+dB)/ =- (dB.

The flux integral can be done because the E-field is nearly constant over
therectangle, OE- dA = E/dz.

E Putting these results into Ampere's Law,

- (dB = Mo - d (Eﬁdz) p - (;—Ij = m)eo%ltz. Because only the E-field is
changing with t| me. Again, these are actually partial derivatives. So the
fE

B+dB relationship between E and B from Ampere's Law is, 111_8 = -Myey—

. T1E 1B 1B = "
In summary, oo and " =-mMy€&, 0
Taking the derivative with respect to z of the first equation and the derivative with respect to t of the second
equation gives, = =- ﬁ and ﬂ—ZB =-mye iE
127 2t fm o
'an 'an o
Combing the results produces, — 2 =Mey—= P . Thisisthe "Wave Equation." Thereisasimilar wave

equation for the magnetic field. So Maxwell's Equations are consistent with the possibility of self
sustaining transverse waves.

Beyond the Mechanical Universe (vol. 39 Ch 23-27, 34-37)
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Examplel: Showthat E = E,,sin(kz - wt) isa wave moving in the positive z direction. Express
kand w in terms of the wavelength, | , and the frequency, f and find their relationship to the

velocity.
A graph of Evs. z at t=0isshown. Thisislike a photograph of the wave.
AE | ;
/\ /\ -
7 : N z
| ;
Noticethat z=| when kz-wt=2pb kl- 0=2pb k= 2|_p k is called the “wave number.”

Below isagraph of Evs. t at z=0. Thisis created by standing at one place and measuring E at
different times as the wave moves by.

AE

N\

N

T

[
< )

N

-
\/ |
2p _

Noticethat t=T when kz-wt=2p b O0-wT =2pb w= T =2pf.

Since E is negative after a short time, you can see from the graph of E vs. z that the wave must be
moving to theright. If you stand at z=0 and wait for one period, then the wave will have traveled
one full wavelength. The speed of the wave can be found using the definition of speed,

OEZZI—:If.
O T
Intermsofwandk,v:If:@xﬂ;,—v.
k 2p Kk

ko ? The Definition of Wave Number

% =1 f =c The Frequency-Wavelength Relationship I
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eguation.

2
Thewaveequatlonlst E =me 01]”:25.

1E

and the time derivatives, % =-wE,, cos(kz - wt) and 111_5 —
z

W
Substituting into the wave equation, - k’E =-mew’EP m

1

wavelength.

m,
From example 1 we know this ratio must be the speed of the waves,

=3.00x10°m/s ° ¢, the speed of light. Light isan EM wave!

The Speed of EM Waves

Example 2: Find the conditions under which E = E,,sin(kz- wt)is a solution to the wave

2
Taking the space derivatives, E = kE,, cos(kz- wt) and % =- szmsin(kz - w) = - kK’E

-w’E, sin(kz - wt) =-w’E.

e -

(0]

In order for EM waves to exist, they must travel at this speed regardless of the frequency or

. Define f(u)© f(kzxwt).

= —xk and

c=
VMoo
Example3: Show that any function of kz+wt is a solution to the wave equation.
2
The general form of the wave equation is, “[IIT ; ul 111“2‘:
We need the derivatives with respect to z, T _ﬂ_f Tu_1f
z fu ‘HZ flu
'"Zf_‘ﬂ‘ﬂka ‘ﬂu‘ﬂf kzﬂf
— = _ St
Tz Tz fu ﬂZ ﬂu fu
and with respect to t, ﬂ_f _ﬂ_fxﬂjzﬂ_f +w) and
: t  Tu ‘Ht fu ,
ﬂ—;=1ﬂ>(iw) iwE 1 f_WZﬂ_Zf_
" b Tt 2 ‘ﬂu2 2
1°f_ 19 o o f
M to th ati _ AVt et
ugging into the wave equation, 22T 2

11]]—D w=ck. Itworks!

If any function of kztwt is a solution to the wave equation why do we usually discuss solutions of the

form E = E;sin(kz - wt) and B = B, sin(kz - wt) ?

Fourier's Theorem states f (kz - wt) = é a sin(k;z-w;t).

|
Any function can be written as a linear combination of sine and cosine waves.
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Example4. Find the ratio of the peak eectric field to the peak magnetic field.

Recall that earlier we started with Faraday's Law and considered a path in the x-z plane and got the

relationship, % =- ﬂﬁB Using the waves E = E sin(kz- wt) and B = B,,sin(kz - wt) we

E w
=— =cC.

get, KE,,cos(kz - wt) = +wB,,, cos(kz - wt) b B—m "
m

Em = CBy, TheRatio of the Peak Fields |

All the properties of eectromagnetic waves that were stated earlier are consistent with Maxwell's
Equations.

4. The Electromagnetic Spectrum

We might suspect that all waves that travel at the speed of light are in fact electromagnetic in nature. For
the most part this turns out to be true. The only essential difference between different types of EM waves
isthe wavelength (or frequency).

300 300k  300M 300G 3x10®  3x10”  3x10®°  3x10% frequency

&

1 : — > inHz
. radio = > infrared ultraviolet ’
N waves o =~ o R
I 2 re! X-rays °
— -8 O _ R
= p > _ O-rays
— E water ar R
| . absorbs || apbsorbs wavelength
1IMm 1km 1m 1mm 1pm 1nm T 1pm Jlfm in meters
Earth you atom nucleu

Discuss: The origin of human vision and the safety of exposure to EM waves (move on to energy).

5. The Poynting Vector

Notice that E° B point in the direction of the velocity vector.  The magnitude of
|E’ B| =EB= %EZ = cB®. Recall that the energy density in electric and magnetic fieldsis given by,
= 36,E” + 5= B”. Therefor E* B must berelated to the energy in the waves,

The exact relationship can be found by finding the total energy deposited by an
EM wave landing on surface in atime dt. This energy must equal the energy
densty in the waves times the volume they  occupy,

Al U=uvol b dU=udV =uAdz = ucAdt. Substituting for u,
du = (—1 €oE” + 5 Bz)cAdt . The power per unit area is,
<« dz=cdt d

U 2 : =L ool 122 _ a2
Adt (Ze cE? +mB). Using the result from above |E B|—EE =cB

thepowerperunitareacanbewrittenasz—l(jt—( ec2|E B|+ 1|E B|) ( e,C +—)|E B| The

two terms in parentheses are equal because ¢ =

dU —
so finaly, =-L|E" B. The Poynting Vector
JMeo y Adt m)l Bl ynting
is defined accordingly,
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o 1
S°

E° B TheDefinition of the Poynting Vector I

The magnitude of the Poynting vector is power per unit area and it points in the same direction as the
velocity.

The instantaneous power per unit areais, S= —nlb EB = % E+Bm sinz(kz - wt). Often the average power
per unit areais caled the “intensity.” Since the average value of the square of the sineis one half,

E,.B, _ E. _cB? :
=EnBrn - =n - En Intensity of EM Waves
2m  2mc 2m

Example5: Sunlight strikes earth with an average intensity of 1400W/me. Find the peak electric

and magnetic fields.
2
Theintensity of EM wavesis, | = 2Em,njc P E,=./2mcl =1060% .

Theratio of the pesk fields gives, E,,, =cB,, P B, :E—(r:“

I
w

53

=

Discuss: hood of acar in the sun and issues related to solar energy.

Example6: Find the total power radiated by the sun.

There are 1400W/m? landing on the earth which is 1.50x10"m away. Since the sun radiates EM
waves uniformly in all directions thisintensity will be the same over the surface area of a sphere
that is 1.50x10"m away.

Using the definition of power and the definition of intensity, | © a _P P

Adt A 4pr?’
Solving for the power, P = 14pr® = (1400)(4p)(1.50x10™)? = 3.96x10° W .

6. Radiation Pressure and Momentum Transfer

When EM waves are absorbed by a surface, not only do they deposit
energy, but they transfer momentum aswell. Theillustration at theright shows U = —% mv

particles with kinetic energy U :—%mvz =3pvabsorbed by a surface, the mnL@—

momentum transferred can be written as, D= 2U
_2U Ty

Y
The relationship between the transferred momentum and deposited energy for EM
wave differs from this result by afactor of two. Thisis because the definition of Wave U

A
kinetic energy U :—%mvz isinvalid for objects moving near the speed of light. VA VAN,

U
For EM waves the answer is, p= —
p= v The Momentum Transfer for Complete Absorption
C
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Usually it is more convenient to talk about the "Radiation Pressure” on a surface. Pressureis defined as
force per unit area. Since the force on a surface is equal to the rate at which it collects momentum,
F_dp _du |

A Adt cAdt

(0]

E .
I - .

P =- TheRadiation Pressure for Complete Absorption
C

For totally reflected waves the momentum transfer and the radiation pressure are just doubled, the same as
for perfectly reflected particles.

Example 7. Find the force due to the radiation pressure on a perfectly reflecting automobile hood

1.00m2 in area.

- _ , V)
Theinitial momentum of the incident wavesis p; = - —.

C
The fina momentum of the reflected wavesis p; = %

. D 2D
The momentum transferredis, Dp=ps - p, = 2_cU p %p :——U.

Dt

o

Thisisthe force on the hood of the car.
Since the Poynting Vector is the energy per second per area,

BP_2ip-_2 - (1400)(1.00) = 9.33x10 °N .
O c 3.00x10 —_—

Chapter 34 - Summary
The Properties of Electromagnetic Waves
» They continueto travel after the source is turned off.
 They travel through empty space.
» They alwaystravel at the same constant speed.
» Thedectric field isaways perpendicular to the magnetic field.
» Thevelocity is perpendicular to both the eectric field and the magnetic field.
* Theratio of the peak eectric field to the peak magnetic field equals the speed of the waves.

The Speed of EM Waves ¢ =

NS
The Ratio of the Pesk Fields E,,, = cB,

The Definition of the Wave Number k © 22

The Frequency-Wavelength Rel ati onship * :J f =
The Definition of the Poynting Vector S° —ni E'B
E.B, E2 _cB?

c

2m  2mc - 2m
The Momentum Transfer for Complete Absorption p = %

The Intensity of EM Waves | =

_ : I
The Radiation Pressure for Complete Absorption P = -
c
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