Problem 4.39

(a)Start with the radial equation 4.35.
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(c)Use the dimensionless variables &= mTwr and €=+ 2 to get,
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(d)Show that for large &, u =e 2 consistent with equation 2.72.

(e)Show that for small &, u = £ consistent with equation 4.59.

(f)Define u(&)=E"'e 2 v(£) and show the radial equation becomes,
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(g)Now use the power series, v(§) = 2 a,&" and require that the coefficients of each
n=0

power of & go to zero.

(h)Show that for odd n, a, = 0 and for even n the recursion relation is,
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(i)Make physical arguments to require E = %hw(% +2n, + 3) .

(j)Show the resulting energies and degeneracies match the results we got in
Cartesian coordinates in problem 4.38



