Problem 6-21 - Clarification

Let's agree to solve this problem as described here.

1. Build a table like the one below.

State	$\mathrm{E}_{\text {Bohr }}\left(\mathrm{E}_{2}\right)$	$\mathrm{E}_{\mathrm{fs}}\left(\alpha^{2} \mathrm{E}_{2}\right)$	g_{J}	$\mathrm{E}_{\mathrm{Z}}\left(\mu_{\mathrm{B}} \mathrm{B}\right)$
$\left\|2,1, \frac{1}{2}, \frac{3}{2}, \frac{3}{2}\right\rangle$	-1		$\frac{4}{3}$	2

2. Draw an energy level diagram similar to problem 6-18 showing the Bohr energy for $\mathrm{n}=2$, then the fine structure splitting. Now add the Zeeman splitting as a function of the strength of the magnetic field using figure 6.11 as a guide. Indicate the m_{j} value for each level as well as the slope with varying B.
