Problem 7.7 Suggestions

- 1. Generalize eq. 7.14 for a two electron atom with Z_{o} protons.
- 2. Rewrite your result in the format of eq. 7.28.
- 3. Explain why the first two terms give the same result as before, $2Z^2E_1$.
- 4. Show that the first two expressions inside the last term can be written as $\left[2\frac{(Z-Z_o)}{Z}\langle V\rangle\right]$ where $\langle V\rangle$ is the potential for a one-electron atom with Z protons.
- 5. Use the Virial Theorem eq. 4.190 to show $\langle V \rangle = 2Z^2 E_1$.
- 6. Make an argument as to why the remaining term is unchanged.
- 7. Finally, show that your expression for $\langle H \rangle$ reduces to eq. 7.32 when $Z_0 = 2$.

8. Complete problem 7.7 by filling in the table below:

<u></u>		,	
Ion	Zo	Z	$\left\langle H ight angle _{ ext{min}}$
H-			
Не			
Li+			