Problem 9.12 - Waypoints

1. Start with $\left[L^{2}, z\right]$ and express L^{2} in terms of its components.
2. Use the known commutators from eq. 4.122 to express the result in terms of four products of x and y with L_{x} and L_{y}. The result is two anti-commutators.
3. Eliminate the appropriate half of each anti-commutator using the appropriate commutator from eq. 4.122. A little algebra gives the stated result,

$$
\left[L^{2}, z\right]=2 i \hbar\left(x L_{y}-y L_{x}-i \hbar z\right) .
$$

4. Write the two cyclic permutations of the stated result for $\left[L^{2}, x\right]$ and $\left[L^{2}, y\right]$. Eliminate the term that contains $i \hbar$ in these two results by using the commutator that the value equal to the $i \hbar$ term.
5. Finally, it is time to substitute the three commutators $\left[L^{2}, x\right],\left[L^{2}, y\right]$, and $\left[L^{2}, z\right]$ into $\left[L^{2},\left[L^{2}, z\right]\right]$. Simplify the resulting mess by explaining that $\vec{r} \cdot \vec{L}$ must equal zero which requires $\mathrm{xL}_{x}+\mathrm{yL}_{\mathrm{y}}=-\mathrm{zL} \mathrm{L}_{\mathrm{z}}$.
6. Stay strong and you'll get the final result!
