Problem 9.3 - Explaining the hint

1. The hint suggests writing the delta function as a rectangle such as,

$$\delta(t) = \begin{cases} \frac{1}{2\varepsilon} & -\varepsilon < t < \varepsilon \\ 0 & otherwise \end{cases}.$$

We'll eventually let ε go to zero.

2. Now the coefficients can be written as,

$$\begin{split} c_a(t) &= 1 & c_b(t) = 0 & t < -\varepsilon \\ \dot{c}_a &= -\frac{i\alpha}{2\varepsilon\hbar}e^{-i\omega_o t}c_b & \dot{c}_b = -\frac{i\alpha^*}{2\varepsilon\hbar}e^{i\omega_o t}c_a & -\varepsilon < t < \varepsilon \\ c_a(t) &= a & c_b(t) = b & t > \varepsilon \end{split}.$$

- 3. Combine the coupled equations to create a second order equation for c_b . Solve this equation for c_b , then substitute to get the solution for c_a .
- 4. Now, set $t = \varepsilon$ in the solutions and let ε go to zero to find a and b.