435B - Phase Shift Analysis

1. Start with Eq. 11.29 and write it for large r. Now, expand the complex exponentials in terms of trig functions to get,

$$
\psi(r, \theta)=A \sum_{\ell} \frac{2 \ell+1}{k r} \cdot i^{\ell}\left\{k a_{\ell} \cos \left(k r-\ell \frac{\pi}{2}\right)+\left[1+i k a_{\ell}\right] \sin \left(k r-\ell \frac{\pi}{2}\right)\right\} P_{\ell}(\cos \theta)
$$

2. Use the trig identity, $A \cos \theta+B \sin \theta=\sqrt{A^{2}+B^{2}} \sin (\theta+\gamma)$ to rewrite the wave function in terms of δ_{ℓ} defined as,

$$
\tan \delta_{\ell} \equiv \frac{k a_{\ell}}{1+i k a_{\ell}}
$$

The result is a wave function with a phase shift,

$$
\psi(r, \theta)=A \sum_{\ell} \frac{2 \ell+1}{k r} \cdot i^{\ell} \sqrt{1+2 i k a_{\ell}} \sin \left(k r-\ell \frac{\pi}{2}+\delta_{\ell}\right) P_{\ell}(\cos \theta)
$$

3. Express a_{ℓ} in terms of δ_{ℓ} to get Eq. 11.46.
