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One of the authors sat down on a chilly
winter morning with a steaming cup of
coffee and his favorite catalog.1 There

it was!  Not a toasty sweater or tropical vacation,
but the MagnaSwing2 (pictured in Fig. 1).  The
MagnaSwing is identical to the Newtonian
Demonstrator3 (the well-known apparatus con-
sisting of five steel balls suspended from strings),
except the balls are replaced by magnets arranged
so that nearest neighbors repel one another.
Even though the Newtonian Demonstrator and
the MagnaSwing appear to be similar devices,
their motions are dramatically different.  This
will be explained by first reviewing the behavior
of the Newtonian Demonstrator and describing
the behavior of the MagnaSwing.  Then we will

Colliding Magnetic Pendula:
When Is a Collision 
Not Collision-like?

review a two-ball collision on the Newtonian
Demonstrator and describe a two-magnet colli-
sion on the MagnaSwing.  Finally, we will ex-
plain why hard-sphere collisions and magnetic
collisions produce different behaviors in these
apparently similar devices.

A Review of the Newtonian
Demonstrator

The history of the Newtonian Demonstrator
actually goes back to the time of Newton.4 In
addition, there is a rich collection of literature in
AAPT journals.5–7 The most entrancing behav-
ior of the device is the fact that when any num-
ber of balls are pulled upward on one side and
released to collide with the remaining balls, the
collision always results in the same number of
balls swinging upward on the opposite side as
were released.  The more one thinks about this,
the more amazing it is.  

Consider the case of one ball released to col-
lide with the remaining four balls.  If the four
balls are treated as a single mass with four times
the inertia of the single ball, then conservation of
momentum requires

mv0 = 4mu2 – mu1 ➯ v0 = 4u2 – u1,           (1)

while the conservation of mechanical energy re-
quires,
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where m is the mass of a single ball, v0 is the ini-
tial velocity of the single ball, u1 is the velocity
the single ball rebounds with after the collision,
and u2 is the velocity of the four balls treated as a
unit.  The algebra gives the result
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Fig. 1.  A photograph of the MagnaSwing.
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This is not what happens at all, yet it is per-
fectly consistent with conservation of momen-
tum and energy.  The error is in considering the
four balls as a unit.  In fact, stating the problem
more correctly: Given the initial velocities of all
five balls, find the final velocities of all five balls.
Now there are five unknowns.  Since conserva-
tion of energy and momentum provide only two
equations, they are not sufficient to uniquely de-
termine the outcome.  There is, in fact, an infi-
nite collection of solutions consistent with these
two principles.  The amazing outcome of the
single ball leaving and the other four staying at
rest can only be explained by a detailed examina-
tion of the forces that the balls exert on each oth-
er.  Several papers have discussed this issue in
some detail.5–7

The Behavior of the MagnaSwing
Once the MagnaSwing arrived, we tore it out

of the box, assembled it, and attempted the ex-
periment described in the previous section.  The
first swing of a single magnet colliding with the
remaining four magnets resulted in the last mag-
net getting most but not all of the energy.  The
magnets in between did not come to rest.  Subse-
quent swings distributed the energy to all of the
magnets, resulting in a wonderfully rich variety
of motion quite unlike the Newtonian Demon-
strator.  This indicates that the amazing motion
of the five balls in the Newtonian Demonstrator
is, in fact, dependent upon the precise nature of
the forces between the balls.

The magnets remain in motion for many
minutes, certainly as long as the steel balls in the
Newtonian Demonstrator.  This shows that me-
chanical energy in the MagnaSwing is conserved,
or more precisely, lost to heat at a rate compara-
ble to that of the Newtonian Demonstrator.  The
conservative nature of the MagnaSwing’s motion
is not surprising in light of the conservative na-
ture of the magnetic force.  In addition, we wish
to note that further experiments, not discussed
here, indicate that the motion is not chaotic but

instead well explained by standard normal mode
methods.

The Collision Between Two Balls
To better understand the differences between

the collisions in the MagnaSwing and those of
the Newtonian Demonstrator, notice that in a
collision between just two balls, the outcome is
uniquely determined by the conservation of mo-
mentum and mechanical energy because there
are only two unknown final velocities. 

Using PASCO motion detectors and Logger-
Pro software from Vernier, we simultaneously
measured the motion of each ball starting with
both pendula at rest; one hanging down at equi-
librium and the other pulled away from equilib-
rium.  Figure 2 shows the motion of the two
(Newtonian Demonstrator) steel balls.

For clarity we have defined the upward swing
of one of the pendula to be in the negative direc-
tion, and have set the zero position where the
ball is hanging vertically.  The balls show the ex-
pected behavior with the oscillatory motion be-
ing exchanged between them; in fact, if one
squints while looking at this graph, a nearly con-
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Fig. 2.  Position-vs-time graph for two colliding
spheres.



tinuous large sinusoid appears.  After a few colli-
sions, it becomes apparent that the incoming
ball does not come to rest after the collision, but
continues to travel a small distance past equilib-
rium.  This is due to slight misalignment in the
strings.

In Fig. 3 it can be seen that the external forces
that act during the collision are perpendicular to
the motion at the time of the collision so they
provide no impulse during the collision.  There-
fore, the unknown final velocities u1 and u2 can
be found in terms of the initial velocities v1 = v0
and v2 = 0, using the laws of conservation of mo-
mentum and energy,

mv0 =  mu2 – mu1
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Solving for the final velocities gives the expected
results, u1 = 0 and u2 = v0.  In summary, we are
able to describe the motion of the two balls with-
out understanding the details of the collision
force.  This, of course, we happily point out to
our students, hoping they come to appreciate the
surprising predictive power of conservation laws.

The Collision Between Two
Magnets

Figure 4 is a graph of position versus time for
several collisions of two magnets.  Instead of act-
ing like the collision between two balls, where
the first ball comes essentially to rest and the sec-
ond ball moves off with almost the same velocity
as the first had before the collision, the magnets
behaved in a more complex manner.  This was
particularly puzzling since the motion for any
two objects was presumed to be independent of
the details of the interaction force, being instead
completely determined by the conservation laws.

The magnets’ motion is not so readily grasped
from the graph.  For the time being, we simply
point out that the magnets “push on” each other
during the entire motion.  For example, even
when one magnet is initially raised to one side (t
~ 0), the second magnet is displaced from equi-
librium.

THE PHYSICS TEACHER ◆ Vol. 40, May 200222

Fig. 3.  The collision of the spheres.

Fig. 5.  The collision of the magnets.

Fig. 4.  Position-vs-time graph for two colliding
magnets.
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Figure 5 illustrates the fact that the magnets
are already interacting and the “collision” is oc-
curring well before the released magnet has
reached the bottom of its swing.  Therefore, the
external forces of gravity and tension act during
the “collision” and the law of conservation of
momentum cannot be used.  Since the law of
conservation of momentum can’t provide the
second equation, the details of the behavior of
the forces are needed to describe the motion
completely.

Note that momentum-conserving collisions
can be realized when magnetic forces are in-
volved, for instance colliding magnetic gliders
on air tracks.  Just be sure to keep the track hori-
zontal!

Comments
In summary, the beautifully intricate motion

of the MagnaSwing is a reminder that the inter-
action we typically call a collision is one in which
the law of conservation of momentum can be
applied.  The application of this law requires no
net external force on the system.  Since this situ-
ation is rarely realized in practice, either the time
for the interaction must be short enough that the
impulse generated by the external forces can be
neglected or these forces must be oriented in
such a way as to exert no net impulse during the
collision.  
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