Intercomparison of Lidar Aerosol Backscatter and in-situ Size Distribution Measurements

Motivation

Aerosol point sensors cannot fully represent the variability of atmospheric aerosol in time and space. Aerosol backscatter lidars may provide valuable information about the spatial distribution of aerosol concentrations.

Instrumentation

- REAL (Raman-shifted Eye-safe Aerosol Lidar)\(^1\) 1543 nm wavelength, 170 mJ pulses at 10 Hz
- CLASP aerosol spectrometer\(^2\) 16 size channels, 600 nm – 17 μm diameter at 10 Hz
- LasAir aerosol spectrometer (PMS, Boulder, CO, USA) 8 size channels, 100 nm – 10 μm, 5 min resolution

Spatial variability of backscatter signal

- Large variation of backscatter intensity is observed both in horizontal and vertical dimensions.
- Identification of aerosol plumes and tracking of plume transport is possible.

How is this variability reflected in aerosol size and number?

Field experiments

- **Canopy Horizontal Array Turbulence Study\(^3\), 2007:** Horizontal and vertical lidar scans over walnut orchard, and in-situ aerosol spectra measurements
- **Chico State University Farm, 2011:** Horizontal lidar stares 3 m above ground towards aerosol spectrometer 1320 m from lidar:

 Fig. 1: a) REAL at Chico State University Farm; b) CLASP mounted 3 m above ground, October 2011.

Sensitivity to aerosol concentration changes

- Small changes in aerosol properties are readily observed in backscatter intensity on time scales of seconds: 10 Mm\(^{-1}\)/dB resolution with \(\sigma_{\text{residuals}} = 4.3 \text{ Mm}^{-1}\)
- Counting statistics of aerosol spectrometer limit the comparability at high time resolution (1 Hz and faster).

Backscatter signal vs. aerosol properties

Conclusions and outlook

- REAL backscatter signal reveals spatial variability of aerosol distribution within several kilometers.
- Backscatter intensity is correlated with aerosol properties measured in-situ.
- Uncertainty analysis of lidar and aerosol spectrometer data required for further intercomparison studies.
- Sensitivity analysis of aerosol refractive index in calculation of scattering coefficient required for lidar vs. in-situ closure study.

References:

Support from the Bavaria California Technology Center (BaCaTeC) [2010-11], NSF AGS Awards 0924407 and 1104342, CSU Chico Research Foundation, and NSERCO EDL is gratefully acknowledged.

Andrews Held, Theresa Seith, Ian M. Brooks, Sarah J. Norris, Shane D. Mayor

University of Bayreuth, Bayreuth, Germany, University of Leeds, Leeds, United Kingdom California State University, Chico, CA, USA

Objective

Compare lidar backscatter and aerosol size distribution data, and characterize the sensitivity of an aerosol backscatter lidar to changes in aerosol size and concentration.