
BOOK REVIEWS

Daniel V. Schroeder, Editor
Department of Physics, Weber State University, Ogden, Utah 84408; dschroeder@weber.edu

Computational Physics (second edition). Nicholas J.
Giordano and Hisao Nakanishi. 544 pp. Prentice Hall, Upper
Saddle River, NJ, 2005. Price: $100.40 ISBN 0-13-
146990-8.

An Introduction to Computer Simulation Methods:
Applications to Physical Systems (third edition). Harvey
Gould, Jan Tobochnik, and Wolfgang Christian. 796 pp. Ad-
dison Wesley, San Francisco, 2006. Price: $74.20 !paper"
ISBN 0-8053-7758-1. !Eric Ayars, Reviewer."

Recently the authors of two well-known texts in the field
of computational physics have released new editions. Com-
putational Physics, by Nicholas Giordano, is now in its sec-
ond edition with an additional author, Hisao Nakanishi. An
Introduction to Computer Simulation Methods is now in its
third edition, with Wolfgang Christian as an addition to the
team of Harvey Gould and Jan Tobochnik. It is the intention
of this review to provide a comparison of these two new
editions that will be useful to anyone considering adopting
one as a course textbook. For simplicity, I refer to the texts as
Giordano and Gould.

SIMILARITIES

As is the case for any texts that cover the same material,
there are significant similarities between the two books. Both
begin with the process of solving relatively simple ordinary
differential equations, even beginning with the same ex-
ample: using Euler’s method for modeling free-fall. From
there, they cover orbital dynamics, oscillations, waves,
chaos, diffusion, percolation, Monte Carlo techniques, E&M,
Schrödinger’s equation, Ising models, and so on—more ma-
terial, really, than anyone could hope to cover in a typical
semester-long computational physics course. The authors of
both texts are fully aware of the time limitation problem, and
have organized the books in such a way as to allow the
instructor to pick and choose topics as desired after covering
the material from the first few chapters.

Both texts are quite readable, written in a conversational
tone that draws the reader into the material. Figures are clear,
understandable, and appropriately chosen. Both have well-
chosen problem sets interspersed throughout the chapters.

One nice feature of both texts is that they are written so
that the physics drives the development of the computational
tools, rather than the tools selecting the physics problems to
solve. Each new computational tool is introduced via a spe-
cific physics problem, so the student has a clear goal in mind
throughout the process. With either book as a text, there is a
reasonable expectation that after completing the course stu-
dents will be able to approach new problems with an attitude
of “Here’s a new problem, what tools can I use on it?” rather
than “Here’s a tool, what can I do with it?”

DIFFERENCES

The most significant difference between the two texts is
their choice of computing language. The decision of what
language to use in a computational physics course is not an
easy one, given the number of very good options available
today. The choices made here have enormous ramifications
in the character of the resulting books. Interestingly, the pre-
vious editions of both texts used True Basic, and this has been
changed in both of the current editions.

Giordano answers the question of what language to use
with the unusual approach of being language agnostic. There
are a few bits of example code early in the text, written in
Fortran and in C, which give the reader a cursory look at
general program structure without really teaching anything
about either language. There are also links to extensive code
examples in Fortran and in True Basic on the textbook’s web
site. The bulk of the text, however, uses non-specific
pseudocode to display the algorithms, rather than by giving
specific code examples.

Gould takes the diametrically opposite approach of choos-
ing a specific language—Java—and using that language ex-
clusively. Not only that, but Gould has been copublished
with a companion book, Open Source Physics by W. Chris-
tian, which provides and documents an extensive library of
open-source Java routines for computational work. !These li-
braries are also freely available on the web, but students may
find this additional reference book helpful." This choice ne-
cessitates dedicating more of the book to language-specific
material, such as the object-oriented programming aspect of
Java.

Another difference between the texts, which may not be
immediately obvious, is Gould’s approach to the problem
sets. While Giordano takes a traditional problem-solution ap-
proach, Gould treats a significant number of the problems as
laboratory exercises. Each of these “projects” has multiple
parts, designed to guide the student stepwise through some
challenging material. Some of the projects encapsulate sig-
nificant amounts of material, which would have occupied a
separate section of a chapter if presented in full. Given that
most real computational physics problems are more multipart
project than straightforward exercise, this is a welcome fea-
ture.

There are differences in coverage as well. Gould tends to
be broader in his coverage. For example, in the coverage of
methods of solving ODE’s, Giordano discusses the Euler
method, the Euler-Cromer method, Runge-Kutta methods in
second and fourth order, and the Verlet method. When dis-
cussing the same material, Gould includes all of these and
adds Euler-Richardson, Beeman, velocity Verlet, predictor-
corrector, adaptive-stepsize Runge-Kutta, and even symplec-
tic methods. There are some curious exceptions to this gen-
eralization, however. Most notably, nothing whatsoever is
said in Gould about systems of linear equations and/or ma-
trix methods, while Giordano dedicates an appendix to this
important topic. Linear least-squares fitting is discussed in

652 652Am. J. Phys. 74 !7", July 2006 http://aapt.org/ajp © 2006 American Association of Physics Teachers

Gould almost as an aside in the chapter on random walks,
whereas Giordano has significant discussion of the linear
case, and higher-order fits as well.

There are two chapters in Gould that have no equivalent
coverage in Giordano: one on relativity and one on three-
dimensional visualization.

STRENGTHS

The greatest advantage of Gould over Giordano is its
choice of language. Having a specific language for the text-
book allows the authors to put in enormous quantities of
language-specific material: user-interface routines, 3D graph-
ics, libraries of ODE solvers, and so on. The chapter in
Gould on three-dimensional visualization is a good example
of the advantages here. The basic material in this chapter—
coordinate transformations, rotations, etc.—is not specific to
any computer language, but the implementation of 3D graph-
ics is so entangled with the specific details of the language
and operating system used that it is nearly useless to discuss
the subject without assuming a specific graphics library. The
choice of Java as language gives the authors opportunity to
provide that library and thus opens up the possibility of dis-
cussing this material in a meaningful way. The presence of
these software libraries also opens up the course to much
more challenging problems than would otherwise be reason-
able to expect of undergraduate students.

The greatest advantage of Giordano over Gould is its non-
choice of language. By not specifying a language, the au-
thors allow themselves to focus purely on the computational
physics aspect of their subject. Gould is so inextricably
linked to Java that if you wish to teach a computational phys-
ics course in some language other than Java, this book should
probably not be used as the primary text.

WEAKNESSES

The omission of systems of linear equations and matrix
methods from Gould is a minor weakness of that text, but not
a major flaw. Their goal of letting the physics guide the
numerical topics, rather than the other way around, makes it
easy to omit this material; and the ease of its omission may
say something about the material’s actual importance at this
level.

Also, although it is the stated intent in Gould that the text
can stand alone, it is not obvious that students would be able
to use this book alone to become proficient in object-oriented
programming of computational physics problems. Instructors
of students with no previous object-oriented programming
experience should probably plan on supplementing the text-
book in this area.

The language independence of Giordano is one of that
text’s strengths, but it is in some ways a weakness as well. If
your students do not have previous programming experience
you should expect to bring to the course considerable re-
sources from outside the text to fill this need. There are times
also when one just wants to see a code example for a par-
ticular topic, and there aren’t any in this text. The website for
the text does provide code for the examples given in the text,
though, and the minor bother of not having these actually in
the text is far outweighed by the flexibility afforded by the
independence of the text from any particular language.

The bibliography at the end of each chapter in Giordano is
probably more than most students will ever use, but is still

somewhat slim compared to the pages !typically" of equiva-
lent material in Gould. Whether this is a weakness on the
part of Giordano or overexuberance on the part of Gould is
an open question.

CLOSING THOUGHTS

You can’t go wrong with either of these texts. If you al-
ready have a preference for some language other than Java,
Giordano is an excellent choice. Its language independence
provides enormous flexibility if you wish to teach the course
in C/C!!, Basic, Python, or even Fortran.

If you are willing to teach the course in Java, though,
Gould would be the better choice. It is a superb package of
tightly integrated materials, powerful libraries, and broad
coverage that will serve you and your students well.

Eric Ayars is an Assistant Professor of Physics at California
State University, Chico, where he devotes much of his time to
building up the experimental facilities for the physics stu-
dents, and to teaching computational physics.

A First Course in Computational Physics and Object-
Oriented Programming with C!!. David Yevick. 403 pp.
!plus CD-ROM". Cambridge University Press, New York,
2005. Price: $70.00. ISBN 0-521-82778-7.

A First Course in Scientific Computing: Symbolic,
Graphic, and Numeric Modeling. Rubin H. Landau. 481
pp. !plus CD-ROM". Princeton University Press, Princeton,
NJ, 2005. Price: $49.50 ISBN 0-691-12183-4.

Computation and Problem Solving in Undergraduate
Physics. David M. Cook. Self-published; see http://
www.lawrence.edu/dept/physics/ccli. !R. Torsten Clay, Re-
viewer".

Computational physics is often cited as a third type of
physics research besides experimentation and theory. Com-
putation shares features of both: first the construction of a
theoretical model for a physical system, followed by analysis
of the “experimental” data from numerical simulations. A
successful computational physicist needs to draw from many
areas of expertise, including theoretical physics, computer
science, programming, parallel computing, and visualization
and graphics techniques.

Although it is relatively easy to agree on what kind of
research falls under the category of “computational physics,”
there are widely varying ideas on how best to teach science
students to successfully use computers. While some physics
departments may offer a degree specialization in computa-
tion and several courses in the area, in the majority of phys-
ics departments, computational physics is taught as a single-
semester elective course. In a single semester one
unfortunately cannot cover all of the elements mentioned
above. Different departments may also see the course as ful-
filling different requirements. For example, the course may
be geared to provide basic computer literacy, such as famil-
iarity with operating systems !often UNIX in the physics com-
munity", scientific writing packages such as LATEX, basic

653 653Am. J. Phys., Vol. 74, No. 7, July 2006 Book Reviews

data analysis, and graphing, etc. In departments where com-
putation is a major research focus, the course may include
high-performance computing, parallel computing, program-
ming, and so on. In most cases Computational Physics is a
recent addition to university curricula, and hence the course
content may be strongly affected by local committee require-
ments, which often forbid new courses from duplicating ma-
terial found in other departments.

There are two main methodologies to organize the class,
based on what computational scheme is used. The two
schemes are programming using a low-level compiled lan-
guage such as FORTRAN, C, or C!!, or using a high-level
symbolic environment such as MATHEMATICA or MAPLE.
While the choice of programming scheme may seem a minor
detail, it makes a large difference in how the class is orga-
nized. The choice usually boils down to the preference and
experience of the instructor, as there are advantages and dis-
advantages to either approach. For a programming course,
students typically write their own programs, learn a series of
numerical methods such as integration, linear algebra, and
Monte Carlo, and apply them to physics problems. This is an
advantage for students planning to do research in computa-
tion, where being able to develop new codes is important.
Being proficient in a programming language is also useful in
the job market beyond physics. Further, once a student has
learned one low-level language, it is usually easy to learn a
different one later on. A major disadvantage is that a large
amount of class time must be used to teach programming
syntax that has little to do with physics, and students without
prior programming experience may be at a large disadvan-
tage. Graphical visualization beyond simple plots may be
difficult.

Proficiency in a symbolic mathematics environment is
very helpful for students in a wide variety of physics core
courses. When using a high-level mathematical environment,
students usually have less exposure to the underlying nu-
merical methods used to solve the problems, since they may
be hidden in “black box” computational routines. Students
may not learn how to approach a numerical problem for
which the appropriate black box is not available. High-level
programming environments usually do not scale well to large
problems, and hence are not typically used for large-scale
computations. However, it is easy to cover a large number of
interesting physics problems, and the graphical visualization
tools are usually excellent and easy to use. Finally, while
high-level environments have the advantage of being self-
contained, they are often expensive and nonstandardized.

Some instructors may choose to cover both the symbolic
and programming approaches. In a programming-based
class, it is easy to throw in a week or two on an introduction
to a symbolic mathematics package. Whether this is success-
ful may depend on the preparation of the students, and
whether programming experience is considered a prerequi-
site for the class. If students have never programmed before,
learning a programming language proficiently in less than
one semester is extremely difficult.

There are at least as many approaches to writing textbooks
for computational physics. Here we review three recent

books aimed at computational physics classes. These three
books illustrate the basic choice outlined above: whether to
teach via programming or in a high-level symbolic environ-
ment.

Yevick’s book follows the straight programming-based
format. The book is accompanied by a CD-ROM including
example programs, a C!! programming environment, and
graphics tools. The tools used can be obtained for free for
Windows or Linux platforms. The best feature of the book is
its good and concise description of the C!! language. More
than half of the book could be considered just a program-
ming text, followed by a short presentation of numerical de-
rivatives, integration, root finding, differential equations, and
linear algebra. This is followed by a large section detailing
advanced object-oriented techniques, and finally short sec-
tions on Monte Carlo and partial differential equations.

The book would be a good fit for instructors who prefer to
teach programming in detail. It is quite specific to C!!, and
could not easily be used with a different language. The or-
ganization of the book is to present the syntax and features of
C!!, with a variety of physics-based problems at the end of
each section as exercises. One possible criticism of the book
is that it focuses too much on programming and does not
give enough of a survey of the type of physics problems that
one can tackle. The final sections on Monte Carlo and partial
differential equations seem to have been added as after-
thoughts; probably the instructor would want to add more
material if covering those topics. For the problems that are
included, undergraduate-level mechanics and electromagne-
tism are sufficient background; there are no problems involv-
ing quantum mechanics. The advanced object-oriented sec-
tions might be considered by some to not fit in an
introductory computational physics course, so one option
might be to leave some of those sections out and instead fill
in more physics examples.

This would be the ideal text for the student who is consid-
ering a career in scientific programming, and wants to learn
C!! very proficiently. Besides being used as a textbook for a
class, this book would be an excellent book for a practicing
computational physicist who wants to learn object-oriented
C!! programming.

Landau’s book covers both the symbolic !MAPLE" and pro-
gramming !JAVA" approaches to computational physics,
roughly with equal weight. As with Yevick’s book, an ac-
companying CD-ROM is provided containing the source
code for program examples. Instructors must provide the
compilers or environments needed to run the examples. The
full title of this book is A First Course in Scientific Comput-
ing: Symbolic, Graphic, and Numeric Modeling Using
Maple, Java, Mathematica, and Fortran 90. The title de-
serves some explanation, as the book appears to cover four
different programming languages! In reality, this is deceptive
advertising as the book is actually written to cover only
MAPLE and JAVA. The CD-ROM provides MATHEMATICA and
FORTRAN 90 translations of the programs !but not the book
text". It would be difficult to use the text with either MATH-

EMATICA or FORTRAN 90. For example, in the MAPLE sections,
the text is liberally filled with sample MAPLE program lines,

654 654Am. J. Phys., Vol. 74, No. 7, July 2006 Book Reviews

and each one would have to be converted by the reader to
MATHEMATICA syntax. Furthermore, certain elements of JAVA

!graphics, object-oriented features, web applets" have no di-
rect translation to FORTRAN 90.

The style of Landau’s text !which he calls “computation
by doing”" is in some sense the reverse of Yevick’s, who
presents programming concepts, followed by example phys-
ics problems. The format will be familiar to users of the book
Computational Physics: Problem Solving with Computers by
Landau and Manuel J. Páez, which used FORTRAN and C.
Each section starts with a physics problem that requires a
numerical solution, and then presents the computational con-
cepts needed to solve the problem. As in Yevick’s book, un-
dergraduate mechanics and electromagnetism are sufficient
physics background, and Landau’s book also does not re-
quire quantum mechanics. Students learn different computa-
tional elements as they work through the problems presented.
This presentation may have an advantage in keeping students
interested in the material without getting bogged down in
learning programming syntax. However, one disadvantage is
that similar material ends up scattered in different parts of
the text, and can be consequently hard to track down. For
example, root finding using MAPLE is first covered in Chapter
5; root finding using bisection !via MAPLE" is covered in
Chapter 8.

The choice of JAVA deserves some discussion. A relatively
new language, JAVA is primarily popular due to its inclusion
of graphics capabilities and its use in Web-based applets.
However, JAVA is not widely used by practicing computa-
tional physicists since it is slow and not widely supported by
numerical libraries. For this reason some instructors might
prefer C or FORTRAN. In the end, students who learn to pro-
gram proficiently in one computer language rarely have
trouble learning another.

The text covers the usual subjects of integration, differen-
tiation, and matrices. Notably absent are random numbers
and Monte Carlo methods. Finally, a section on the math-
ematical typesetting language LATEX is included. Overall, the
book would be good for instructors teaching an introductory
undergraduate class, and who want to include a little pro-
gramming and a little symbolic mathematics.

Computation and Problem Solving in Undergraduate
Physics was written and self-published by David Cook of
Lawrence University. This text !or maybe more accurately,
collection of virtual texts" addresses a common problem
among computational physics texts: there is currently no one
standardized programming language, environment, or hard-
ware setup. Instructors may use a certain book because they
like the presentation and problems, despite the fact that it
uses a programming language that is not their first choice. Or
they may be forced to use a book that they dislike, because
of their university’s choice of what software to site license.
Therefore, Cook has constructed a text in which instructors
may choose which languages they want. The appropriate sec-
tions are then assembled, printed, and bound together. In
order to keep the various versions coherent, chapter numbers
may not be consecutive, but an appropriate index for each
version is included.

The programming languages/environments that can be in-
cluded in the text are IDL, MATLAB, MACSYMA, MAPLE, MATH-

EMATICA, C, and FORTRAN. Cook further breaks down the
“high-level environment” classification to include separate
chapters on array-processing systems !IDL, MATLAB" and
symbolic mathematics systems !MACSYMA, MAPLE, Math-

ematica". Subroutine libraries from Numerical Recipes are also
discussed. Additional appendices are available covering LA-

TEX, TGIF !a program for producing drawings", and LSODE !a
Fortran library for solving differential equations". The sec-
tions describing the high-level languages !IDL, MATLAB, etc."
are all similar in organization, presenting systematically the
capabilities of the language !including graphics". At the end
of each section is a list of exercises. Sections on low-level
programming are also included !FORTRAN, C". Although the
introduction to programming is taught using a pseudocode
rather than a specific programming language, the presenta-
tion is somewhat biased towards FORTRAN. For example, in
the pseudocode, FORTRAN array notation and DIMENSION

statements are used. The introduction is followed by separate
sections explaining either C or FORTRAN syntax. One key
feature of C, pointers, is not discussed. While it is possible to
avoid pointers in simple C code, it is difficult to write code
interfacing with many popular matrix libraries without some
knowledge of pointers and C memory allocation. The intro-
duction to programming is followed by sections on the Nu-
merical Recipes libraries, differential equations, integration,
and root finding. Random number generation and Monte
Carlo are not covered.

Cook’s text includes more than enough material for a
course, both reading and classwork. The book has a good
balance between being a reference on commands for the
symbolic languages, including problems, and discussing
physics applications. Of the three books reviewed, Cook’s
covers the largest amount of physics, and is the only one to
include quantum mechanics !Schrödinger’s equation in one
dimension". The physics background assumed for some of
the problems is more advanced than that of most undergradu-
ates. However, the number of problems is large enough so
that an instructor could pick appropriate problems for either
a graduate or undergraduate class. The available customiza-
tion options are unique, and could be adopted to a variety of
courses, with possibly the exception of a course based solely
on C programming.

R. Torsten Clay is an Assistant Professor in the department
of Physics and Astronomy at Mississippi State University,
and a member of the Center for Computational Sciences at
the MSU High Performance Computing Collaboratory. His
research is in the theory of strong correlated electron mate-
rials and computational methods for many-body systems. He
also teaches the Computational Physics course at Missis-
sippi State University.

655 655Am. J. Phys., Vol. 74, No. 7, July 2006 Book Reviews

INDEX TO ADVERTISERS

Physics Academic Software . Cover 2
Houghton Mifflin . 561
Princeton University Press . 563
WebAssign . 564

656 656Am. J. Phys., Vol. 74, No. 7, July 2006 Book Reviews

