
What the Arduino is What kind of data the
Arduino can collect

What collection modes
can be used

ATMega328
µ-Controller

Reset

6.9 cm

“Analog” (PWM) outputs
USB/Serial
Converter

Digital in/out

USB Port

Voltage
Regulators

Power
Jack

No clue, sorry Power outputs Analog Inputs
(10-bit A/D)

Crystal
Oscillator

Blinky lights

The Arduino is an open-source microcontroller system based on the ATMega series of
chips. All of the software and hardware is open-source: if you don’t want to buy one you can
just build your own using the freely-available schematics. (The cost for a professionally-
fabricated unit is less than $30, though, so it’s easiest to just buy one.) What makes an ATMega
chip an Arduino is the “bootloader” code which allows it to be programmed via a serial
connection rather than a more complicated (and expensive) hardware programmer. This
bootloader modi!cation decreases the available program memory by about 2kB, but the
result is a very easy-to-program device.

Arduino programs are written in “Wiring”, a simpli!ed version of c/c++. Once the program is
written (on your computer), it is uploaded to the Arduino via a USB cable. The program
instructions are saved in "ash memory on the microcontroller, which runs the code any time
power is supplied. The Arduino does not need to be connected to the computer to run, once
it has been programmed.

The ATMega328-based Arduino has 30kB of usable program memory, 2kB of RAM for variable
storage, and another 1kB of non-volatile EEPROM. It has 14 dedicated digital I/O lines, six of
which can be used for Pulse-Width Modulation (PWM) output. It also has six 10-bit A/D inputs.
It includes support for UART TTL serial and I2C communications, as well as external interrupts.

The board shown above is the “classic” Arduino. There are numerous other designs, such as the
Arduino Mega (with 54 DIO pins, 14 PWM outputs, 16 AI pins, and 124kB of usable program
memory) and the Arduino Pro Mini (same speci!cations as the Arduino, but without on-board
power or USB, and the size reduced to 18x33x2mm).

Digital Timing

Direct Analog Measurements

Indirect Measurements

The “standard” Arduino can collect digital data from up to 20 lines with sub-millisecond timing
resolution. In addition, two of those digital lines can be con!gured as hardware interrupts for
more precise (microsecond) timing.

Digital data collection is ideal for use with photogates, ultrasonic range-!nders, quadrature-based
angular position sensors, reed switches, Hall e#ect switches, contact switches, push-buttons, and
any other sensors that produce a logic-level signal.

The built-in 10-bit ADCs on the ATMega chips are limited in resolution to one part in 1024, or about
0.1% of the measurement range. This is still su$cient for useful measurements with MEMS
accelerometers, light-level sensors, potentiometer-based angular measurements, analog Hall
sensors, sound level meters, and other low-precision analog voltage measurements.

The built-in serial and I2C communications of the Arduino allow communications with other
instruments (serial) and chips (I2C) that can vastly increase the measurement capabilities of the
device. Examples might include the ADS8344, with 8 channels of 16-bit ADC; or the LTC2485
ADC chip with 24-bit resolution. There are I2C sensor chips manufactured now that can measure
capacitance changes of a few femto-Farads, atmospheric pressure changes corresponding to
a 20cm change in height, and just about anything else you can imagine.

And while it’s collecting that data...
30kB of program memory can hold some pretty sophisticated software, and the Arduino is
ideal for controlling servos and relays and other experiment-control hardware. It is quite
possible to do things like use a quadrant photodiode and a pair of servos to track a light source
while measuring the total intensity, or use software PID control and an H-bridge chip to drive
a Peltier junction and control the temperature of an apparatus.

This is a complete computer, with memory comparable to some of the earliest personal
computers, measurement capabilities greater than those early computers, and a mass of a
couple of grams.

Actual
size

“Tethered” data collection
The “standard” Arduino has built-in USB/Serial capability. This allows you to connect the
Arduino to a computer via the computer’s USB port, and transfer the measurements to the
computer via serial communications.

In this con!guration, the $30 Arduino can duplicate all of the digital capabilities of (for example)
a Vernier Software LabPro; but with 18* digital inputs. (Of course, you’d have to write your own
software...)

The Arduino is very useful in this con!guration as an I2C adaptor. Dedicated I2C-to-serial
tranceivers are quite expensive, but the Arduino can perform the duty admirably with a
very simple program. This capability opens up an enormous array of I2C sensors to use with
LabVIEW or other serial-capable data-collection mechanisms.

*Two of the 20 possible digital lines would be needed for serial communications in this
tethered con!guration, leaving 18 for data collection.

Wireless data collection
Using XBee transceivers, one can operate in “tethered” mode without the wire between the
Arduino and the computer. With minimal con!guration, a pair of XBees can act as a virtual
serial cable with a range of up to 15 miles. One XBee is connected to the serial pins of the
Arduino, the other is connected via a USB/Serial adaptor to the USB port of the computer.

Remote collection & storage
One of the most promising uses of the Arduino —particularly the Arduino Pro Mini— is as
a remote datalogger. One can build a self-contained device consisting of a power supply,
Arduino, any desired sensors, and a data storage mechanism such as a micro-SD memory
card. This small and lightweight device could then be incorporated into experiments that
would be otherwise be di$cult to access, such as weather balloons, rockets, or submersibles.
After recovery, the memory card can be removed and the data !le read by a computer with
an appropriate adaptor.

A prototype remote datalogger is
shown here: this particular one
measured acceleration on three
axes, at 100 samples/second, with
a resolution of 0.04 m/s/s.

Using Arduino Microcontrollers
as Inexpensive Dataloggers

Dr. Eric Ayars, California State University Chico www.csuchico.edu/phys

California State University

Chico

Physi
cs v

Today
Decides

Tomorrow

Special thanks to the
students of the CSUC
SPS, without whose

curiosity and
enthusiasm I would
never have gotten

quite so involved in
such interesting stu#.

More information available:
Arduino website: http://arduino.cc/
Arduino/Freeduino index: http://www.freeduino.org/
My website: http://phys.csuchico.edu/~eayars/

