
Beyond Blinking Lights:
Real-world Lab Solutions
Using Arduinos
Eric Ayars
California State University, Chico

Outline

When you should use
an Arduino

When you shouldn’t
use an Arduino

When you shouldn’t
use an Arduino

Microcontrollers are best at
single tasks.

Sub-instruments —
doing part of a job very
well.

Communications
bridging — talking to
other chips or sensors

Faking Data —
generating test data/
signals

New Instruments —
Borderline case…

Not physics lab...
... but applicable to lab. Warning indicators, fail-
safes, interlocks, etc.

Sub-instruments
Here an “Arduino” controls a physical key-switch.

Part of the equipment
Here both cameras are controlled (zoom and
shutter) with one set of buttons

Other sub-instrument ideas

Temperature controller

Other PID control

Position control

Stepper motor speed/acceleration control

Measure things you
can’t measure

otherwise

Sensor
Interfacing

Temperature of a 30cm-square 5mm aluminum
plate. Resolution: 0.1°C thermal, 3cm spatial.
(Video sped up by a factor of 2.)

Communications Bridges
I2C: A/D and D/A converters 
Accelerometers, Gyros, 
Clocks, Thermometers,
Barometers...

SPI: Canon AF Lenses, SD
Cards, PASCO sensors...

One-wire: Thermometers,
other environmental
sensors...

Serial:  
Old equipment

“Faking” data

“Faking” data

New
Instruments

Flexibility in
instrumentation
If you can do it with a
small C++ program,
you can (probably) do it
with a microcontroller.
And you can change
the program.

Mechanical Chaotic
Oscillator

Rotating dipole in
oscillating B field

All parameters are
controlled by the
microcontroller.

SCPI commands
through USB allow any
computer to interface
to this instrument.

-3 -2 -1 1 2 3
θ (rad)

-20

-10

10

20
ω (rad/sec)

Amplitude 0.82

Flexibility, again:

Low-Frequency
programmable  
semi-intelligent  
sensor-equipped  
USB-interfaced 
SCPI-capable 
high-current 
arbitrary function
generator

Datalogging
Collect and save data
for later analysis

Arduino is only “fair” as a
datalogger.

Speed: 10 Hz for saving data to text file on SD card

Precision: 10-bit A/D conversion

If you don’t need speed or precision, though, it’s still
useful.

…and you can add external A/D converters for better
precision.

This is probably a bad idea.

Here’s why it’s a bad idea.
If you find yourself building a computer, just buy a
$35 computer instead.

When to not use an Arduino

Do you need an Arduino’s complexity, or will a single
chip do the job?

Do you want breadboard capability?

Do you need more capability than an Arduino provides?

“Arduino” goes way beyond
just Arduino.

There are a lot of clones and other footprints that work
within the Arduino IDE.

Most Atmel microcontrollers are programmed by SPI.
Arduino can communicate via SPI.

You can program an Arduino to program other
microcontrollers!

You can still use the standard Arduino IDE, so it’s still
“Arduino-easy”.

Cheap Arduino Clone
(sparkfun.com)

Same footprint as
Arduino, half the cost.

It’d be nice to have this
in a breadboard-
friendly package…

Clone!

http://sparkfun.com

same chip (ATmega328)

breadboard-friendly layout

cheaper than stock Arduino

Slightly fewer pins

USB—serial adaptor missing

obsolete now, the “Pro Micro” is
the same form factor with USB.

Arduino Pro Mini

ATtiny45 or ATtiny85
5 i/o lines

4k or 8k memory

lower power requirements

$1.35 each (cheaper in bulk)

ATtiny84

Same internal capabilities as the
ATtiny85, more i/o pins.

My programmer

There’s a “real” Arduino
under there…

8-pin chips (ATtiny85)
can be plugged directly
in and programmed

14-pin (ATtiny84) I can
grab with the chip-clip
and program in-circuit.

Teensy 3.1/3.2
ARM Cortex-M4
processor

6x speed, 8x memory

16-bit A/D inputs

12-bit D/A output

dedicated  
hardware inter- 
facing lines

Built-in real-time clock

Built-in USB

$20

Summary

Microcontrollers are best when used as single-purpose
dedicated hardware.

Don’t get carried away.

There are a lot of non-Arduino options: pick what’s best
for your application.

Finally…

Best practice for teaching:
Face it: many students are smarter and more
creative than us. Supply cool tools and stand back.

