
Phonons in a one-dimensional crystal

Dr. Eric Ayars
California State University, Chico

ayars@mailaps.org
(530) 898-6967

AAPT Summer 2007 meeting, Greensboro NC
Workshop 31, Advanced Labs

July 29, 2007



Phonons in a One-Dimensional Crystal

The Kronig-Penney model for electron wavefunctions in a crystal predicts
that there will be “gaps” in the energy: energy regions for which there are
no solutions to the Schrödinger equation.[3, 467–470] For very similar rea-
sons, there are forbidden frequency regions in the vibrational spectra of a
one-dimensional diatomic crystal lattice. We will use a “crystal” formed
from alternating masses (fishing weights) attached at regular intervals on
a vibrating wire. By measuring the amplitude of vibration as we scan the
driving frequency in the wire, we can determine the resonant angular fre-
quencies of the “phonons” allowed in the wire. We can also observe the
forbidden region, where there are no allowed resonant frequencies.[2]

Mathematical Background

Begin by considering a series of masses on a wire, as shown in figure 1.[1,
104–107] The “lattice constant” is the distance between equivalent points
on the lattice, as shown by a. The masses of the larger and smaller weights
are mu and mv, respectively. The transverse displacement of the larger and
smaller masses is represented by u and v, respectively, with s an index to
indicate which mass we’re talking about. The transverse spring constant
is k.

a

us us+1us-1 vs-1 vs vs+1

mu mv

Figure 1: Diatomic 1-D crystal, with notation indicated

Newton’s second law for us and vs on this wire becomes

mu
d2us
dt2

= k(vs − us) + k(vs−1 − us)

= k(vs + vs−1 − 2us) (1)

mv
d2vs
dt2

= k(us+1 − vs) + k(us − vs)

= k(us+1 + us − 2vs) . (2)
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We will look for plane-wave solutions, of the form

us = ueisKae−iωt (3)
vs = veisKae−iωt (4)

where u and v are the maximum amplitudes of mu and mv, and K is the
wavenumber, related to the wavelength λ by

K ≡ 2π
λ
.

Substituting equation 3 into 1 gives

mu

(
−ω2ueiskae−iωt

)
= k(vs + vs−1 − 2us)

−ω2muue
isKae−iωt = k

[
veisKae−iωt + vei(s−1)Kae−iωt − 2ueisKae−iωt

]
−ω2muu = k

[
v + ve−iKa − 2u

]
or

(2k − ω2mu)u− k(1 + e−iKa)v = 0 . (5)

A similar substitution and manipulation gives, for mv,

−k(eiKa + 1)u+ (2k − ω2mv)v = 0 . (6)

Equations 5 and 6 can be solved exactly, but it is more instructive to
write them in matrix form:[

2k − ω2mu −k(1 + e−iKa)
−k(eiKa + 1) 2k − ω2mv

] [
u
v

]
= 0

From this we see that in order for a solution to exist, the determinant of the
left-hand matrix must be zero:∣∣∣∣ 2k − ω2mu −k(1 + e−iKa)

−k(eiKa + 1) 2k − ω2mv

∣∣∣∣ = 0

=⇒ 2k2(1− cos(Ka))− 2kω2(mu +mv) + ω4mumv = 0 (7)

Solving equation 7 for cos(Ka) gives

cos(Ka) = 1− ω2

k
(mu +mv) +

ω4

2k2
mumv (8)
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In order for equation 8 to be true, the magnitude of the right hand side must
be less than or equal to one. We’re not particularly interested in the limit
at Ka = 0, so we instead look at the other limit to cos(Ka) at Ka = π, for
which

−ω
2

k
(mu +mv) +

ω4

2k2
mumv ≥ −2

This has no real solutions on the range between ω =
√

2k
mu

and ω =
√

2k
mv

.
We have assumed an infinitely long wire, for which the allowed solutions

are essentially continuous. The actual equipment is not infinite in extent, of
course, so within the region of allowed frequencies there are discrete resonant
frequencies rather than a continuum. But the forbidden region between
ω =

√
2k
mu

and ω =
√

2k
mv

exists, regardless.

Lock-In Amplification

A lock-in amplifier is a powerful tool for extracting very small periodic sig-
nals from a comparatively large noise background. In this experiment, we
want for the oscillations of the wire to remain small, so that the linear ap-
proximations used in the preceding derivation hold. A lock-in amplifier is
perfect for this situation: here’s how it works.

The integral of the product of two sine functions,∫ ∞
−∞

sin(ω1t) sin(ω2t) dt

is usually zero. This is because the two functions are each positive (and
negative) half the time, so their product is positive (and negative) half the
time and the integral is then zero. The exception to this is if ω1 = ω2 ≡ ω,
in which case the integral becomes∫ ∞

−∞
sin2(ωt) dt

which is always positive.
Any signal can be expressed as the sum of some carefully-chosen set of

sine waves.
S(t) =

∑
i

Ai sin(ωit)

So if we took an arbitrary signal and multiplied it by a signal at the frequency
we wanted to see, and integrated, most of the components of the signal would
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go away, leaving only the component with the reference frequency.∫ ∞
−∞
S(t) sin(ωot) =

∫ ∞
−∞

∑
i

Ai sin(ωit) sin(ωot) dt

= 0 + 0 + · · ·+
∫ ∞
−∞

sin2(ωot) dt+ 0 + · · ·

This is, in essence, what is done by a lock-in amplifier.
Of course, there are some complications. For starters, it takes awhile

to integrate over all time. Instead, we integrate over some time constant
τ . This results in a somewhat broader peak: the integration does not go
completely to zero for values of ω near ωo. The peak is still centered at ωo,
but the width is inversely related to τ . There is a trade-off: you can get
fast results with a short time constant, or precise results with a long one.
In general, use as long a value of τ as you can, and at least make sure it’s
much greater than 1/ω.

Another complication is that the phase of the signal affects the result.
We’ve ignored phase so far in this discussion, but consider what happens
if the desired frequency component in the signal is out of phase with the
reference signal by 90◦.∫ τ

−τ
sin
(
ωt+

π

2

)
sin(ωt) dt =

∫ τ

−τ
cos(ωt) sin(ωt) dt = 0

It turns out that we can use this to our advantage, though, by use of a
dual-channel lock-in. One channel multiplies the signal by sin(ωt) and in-
tegrates: the other multiplies by cos(ωt) and integrates. The resulting two
components correspond to the y and x components of the signal in phasor
representation. We can then use this to obtain not only the original signal
amplitude R, but also the phase difference φ between the signal and the
reference.

R =
√
x2 + y2 φ = tan−1 y

x

If phase measurement is an important consideration in your experiment, try
to set the phase angle to about 45◦ so as to minimize the effect of small
errors in x or y.

Experimental Procedure

1. Begin by checking the alignment of the masses on the wire, as they can
easily be knocked out of position. There should be pairs of masses,
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one large and one small, in keeping with the idea that this is a one-
dimensional “crystal” of some material. The masses should be at a
uniform spacing of 15 cm or more, and the supports at the ends of the
wire should be located half this spacing from the nearest mass. The
tension in the wire should be as high as the wire can safely bear, so
that the frequencies are higher and the time constant on the lock-in
can be correspondingly shorter.

2. Align the driving and detection coils so that they are directly below
(about 1-2 mm) the first and last masses. The detection coil (the
one that looks suspiciously like an electric guitar pick-up) should be
attached to the ‘A’ input of the lock-in amplifier, and the driving coil
should be attached to the ‘sin out’ frequency output.

3. Rather than sweeping the frequency by hand (a somewhat lengthy
and boring process) we will be using LabView to control the lock-in
amplifier, via a GPIB interface.

Start LabView, and load frequency-sweep.vi from the shared directory.
Adjust the program settings to the desired values: I recommend a
sweep range of 1–200 Hz, 1000 points, a time constant of at least
300 ms, and a time interval between frequency steps of several times
the time constant. The sensitivity required will depend on the exact
spacing between the coils and the wire, but 200 µV is a good first
guess. Set the driving amplitude to 5.00V.

The driving coil attracts the wire twice per cycle, not once, so the
driving frequency that the wire sees is actually twice the driving fre-
quency generated by the lock-in. For this reason, set the harmonic
number to 2. This makes the lock-in look at the amplitude of the 2f
signal rather than f .

Make sure that the lock-in displays and reports R and θ rather than
x and y. This is the default behavior for the program, but worth
checking anyway.

4. Run the scan. This takes awhile, so find something useful to do while
you’re waiting. Save the data when the sweep is complete.

5. Plot amplitude vs Frequency, and observe the gap between the first
and second clusters of frequency peaks. Note that the lock-in will
report spurious peaks at multiples of 60 Hz, due to pick-up of the AC
mains and related harmonics — ignore these peaks in your analysis.
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6. From the graph in step 5, extract ω and K data. the first reso-
nance peak is the fundamental, the next the first harmonic, etc. from
the length of the wire and the harmonic number, you can obtain the
wavelength λ and thus wavenumber K. Remember that the driving
frequency at the wire is twice the frequency reported by the lock-in
amplifier.

Plot ω vs K. Note the frequency gap at K = π
a . Make a qualitative

comparison to the plot of energy vs K in your textbook.
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Instructor’s notes

This lab, as written, uses a lock-in amplifier (LIA). This is a rather expensive
bit of equipment, but it can be used for many applications in numerous fields
of research.

One could presumably do this experiment with a spectrum analyzer or
other tool to make a plot of amplitude v. frequency. It has also been done
by hand, determining the resonances by looking at the amplitude of an
oscilloscope trace, but I would not wish this on anyone.

Equipment Sources

Lock-in amplifier The best ones are made by Stanford Research Systems.

http://www.thinksrs.com

My personal favorite is the SR850, but the SR830 is an excellent choice
for this experiment and many others.

http://www.thinksrs.com/products/SR810830.htm

Signal Recovery also makes a good digital LIA, the 7225.

http://www.signalrecovery.com/7225.htm

While not as good as the SR830 at higher frequencies,1 it is quite
adequate for this experiment, and costs about half as much as the
SR830.

Do make sure that whatever LIA you purchase allows GPIB control.

Wire It has to be ferromagnetic, for obvious reasons. The best signal is
obtained using soft iron wire, usually sold as “stovepipe wire” in a
hardware store. Steel wire, such as what I used in the workshop,
works with a good pick-up coil and allows more tension, but some
steels are not particularly magnetic...

Weights Fishing weights purchased from the local fly-fishing shop. Avoid
the “removable” weights with the extended tabs, such as the ones sold
at Walmart: the asymmetry of the tabs allows significant torsional
modes, which cause no end of confusion.

1The Signal Recovery LIA’s, as of 1999–2000 or so at least, claimed to operate at
frequencies of up to 120 kHz. The Stanford Research Systems LIA’s go only to 102 kHz.
However, the Signal Recovery models actually only go to 60 kHz, and then look at the
second harmonic for 60-120 kHz. This increases the noise level significantly in the higher
frequency range. The process of discovering, isolating, and working around this bit of
chicanery on their part delayed my Ph.D by about two months. Not that I am bitter.
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Drive coil I used a solenoid coil salvaged from a 8.5” floppy drive. (Yes,
we have some OLD equipment in our back storage room!) The exact
details are not the least bit critical, it just needs to be a coil of some
sort.

Pick-up coil You can spend a lot of time winding a great pick-up coil. I
did. When you’re done, call the local music store and see if they have
any spare electric-guitar pickups. I bought one for $10, and it increased
the signal/noise ratio by a factor of 5–10 or so. Get a “humbucker”
pickup if it’s available, as they pick up less 60-cycle AC noise.

Hardware Lab clamps, rods, hanging masses, cables, etc. . . All standard
lab hardware.

Figure 2: Photograph of the driver-end of the wire
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Figure 3: Photograph of the receiver-end of the wire
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Figure 4: Frequency response of the “one-dimensional crystal”. Note that
the frequency scale is the driving frequency to the excitation coil: the fre-
quency of the wire is twice this value.
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Figure 5: Plot showing actual modes, with bandgap
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